-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_image.py
96 lines (74 loc) · 2.34 KB
/
run_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# coding: utf-8
# License: Apache 2.0
# Author: Calvin Winkowski
from __future__ import print_function, division
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
from torchvision.datasets import VisionDataset
from PIL import Image
import time
import os
import os.path
import copy
# Parameters of interest
fc_int = 300
class_strings = [
"Center stack, Cup holder - console",
"Forward, Instrument cluster, Left windshield",
"Left window / mirror",
"Rearview mirror",
"Right window / mirror",
"Right windshield"
]
import torch
from torchvision import datasets
def do_run(model_path, image):
slug = os.path.basename(model_path).rsplit('.', 1)[0]
# Data augmentation and normalization for training
# Just normalization for validation
data_transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image = Image.open(image)
image_t = data_transform(image)
image_t = image_t.unsqueeze(0)
image_t = image_t.to(device)
class_names = [1, 3, 4, 6, 7, 8]
# Finetuning the convnet
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
classifier = nn.Sequential(nn.Linear(num_ftrs, fc_int),
nn.ReLU(),
nn.Dropout(p = 0.2),
nn.Linear(fc_int ,len(class_names)),
nn.LogSoftmax(dim = 1))
model_ft.fc = classifier
checkpoint = None
if torch.cuda.is_available():
checkpoint = torch.load(model_path)
else:
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model_ft.load_state_dict(checkpoint)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
model_ft.eval() # Set model to evaluate mode
outputs = model_ft(image_t)
_, preds = torch.max(outputs, 1)
preds = preds.cpu().data.numpy()
print(outputs)
print(preds)
print(class_strings[preds[0]])
if __name__ == '__main__':
#do_run()
import argparse
print(f"Inference on {sys.argv[1]}")
do_run(sys.argv[1], sys.argv[2])