-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhour_level_ppo_valid_tianshou.py
312 lines (280 loc) · 10.2 KB
/
hour_level_ppo_valid_tianshou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import pandas as pd
import numpy as np
# from processor.preprocessors import data_split
from trading_env.env_cryptotrading_tianshou import CryptoTradingEnv
from config import (
TRAIN_START_DATE,
VALID_2_END_DATE,
TEST_START_DATE,
TEST_END_DATE,
)
import argparse
import datetime
import os
import pprint
import torch
from torch import nn
from torch.distributions import Independent, Normal
from torch.optim.lr_scheduler import LambdaLR
from tianshou.env import SubprocVectorEnv
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.policy import PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
import warnings
warnings.filterwarnings("ignore")
from config_template import Config
# from stable_baselines3.common.logger import configure
def data_split(df, start, end, target_date_col="timestamp"):
"""
split the dataset into training or testing using timestamp
:param data: (df) pandas dataframe, start, end
:return: (df) pandas dataframe
"""
data = df[(df[target_date_col] >= start) & (df[target_date_col] < end)]
data = data.sort_values([target_date_col, "tic"], ignore_index=True)
data.index = data[target_date_col].factorize()[0]
return data
processed_dts10_add_tech = pd.read_csv("dataset/hour-level/crypto_TI_t10_2023-04-01.csv")
state_interval = 5
TEST_START_DATE = pd.to_datetime(TEST_START_DATE)
TEST_START_DATE = TEST_START_DATE - pd.Timedelta(hours=state_interval - 1)
TEST_START_DATE = TEST_START_DATE.strftime('%Y-%m-%d %H:%M:%S')
train = data_split(processed_dts10_add_tech, TRAIN_START_DATE, VALID_2_END_DATE)
valid = data_split(processed_dts10_add_tech, TEST_START_DATE, TEST_END_DATE)
print(f'{len(train) = }')
print(f'{len(valid) = }')
crypto_tic_dim = len(train.tic.unique())
# state_space_dim = 1 + 2*crypto_tic_dim + len(INDICATORS)*crypto_tic_dim
state_space_dim = 1 + (state_interval * 5 + 1) * crypto_tic_dim
print(f"Stock Dimension: {crypto_tic_dim}, State Space: {state_space_dim}")
buy_cost_list = sell_cost_list = [0.001] * crypto_tic_dim
num_stock_shares = [0] * crypto_tic_dim
env_kwargs_train = {
"cash": 100000,
"action_scaling": 1 / 10,
"num_crypto_shares": num_stock_shares,
"buy_cost_pct": buy_cost_list,
"sell_cost_pct": sell_cost_list,
"state_space_dim": state_space_dim,
"crypto_dim": crypto_tic_dim,
"action_space_dim": crypto_tic_dim,
"print_verbosity": 5,
"eval_time_interval": 30 * 24,
"is_debug": True,
"risk_control": False,
"model_name": "ppo_hour_level",
"data_granularity": 24,
"state_interval": state_interval,
"is_training": True,
"cfg": Config()
}
env_kwargs_test = env_kwargs_train.copy()
env_kwargs_test["is_debug"] = False
env_kwargs_test["is_training"] = False
def make_trading_envs(train_df, test_df, train_num, test_num):
env = CryptoTradingEnv(df=train_df, **env_kwargs_train)
def get_train_env():
return CryptoTradingEnv(df=train_df, **env_kwargs_train)
train_envs = SubprocVectorEnv([get_train_env for _ in range(train_num)]) # type: ignore # noqa: E501
def get_test_env():
return CryptoTradingEnv(df=test_df, **env_kwargs_test)
test_envs = SubprocVectorEnv([get_test_env for _ in range(test_num)]) # type: ignore # noqa: E501
return env, train_envs, test_envs
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CryptoTradingEnv-v0")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--buffer-size", type=int, default=4096)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=30)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=2048)
parser.add_argument("--repeat-per-collect", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--training-num", type=int, default=64)
parser.add_argument("--test-num", type=int, default=16)
# ppo special
parser.add_argument("--rew-norm", type=int, default=True)
# In theory, `vf-coef` will not make any difference if using Adam optimizer.
parser.add_argument("--vf-coef", type=float, default=0.25)
parser.add_argument("--ent-coef", type=float, default=0.01)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--bound-action-method", type=str, default="clip")
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=0)
parser.add_argument("--norm-adv", type=int, default=0)
parser.add_argument("--recompute-adv", type=int, default=1)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_ppo(args=get_args()):
env, train_envs, test_envs = make_trading_envs(
train, valid, args.training_num, args.test_num
)
args.state_shape = env.observation_space.shape or env.observation_space.n # type: ignore
args.action_shape = env.action_space.shape or env.action_space.n # type: ignore
args.max_action = env.action_space.high[0] # type: ignore
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high)) # type: ignore
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
actor = ActorProb(
net_a,
args.action_shape,
max_action=args.max_action,
# unbounded=True,
device=args.device,
).to(args.device)
net_c = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
torch.nn.init.constant_(actor.sigma_param, -0.5)
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
optim = torch.optim.Adam(
list(actor.parameters()) + list(critic.parameters()), lr=args.lr
)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
def dist(*logits):
return Independent(Normal(*logits), 1)
policy = PPOPolicy(
actor,
critic,
optim,
dist, # type: ignore
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=True,
action_bound_method=args.bound_action_method,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
eps_clip=args.eps_clip,
value_clip=args.value_clip,
dual_clip=args.dual_clip,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
)
# load a previous policy
if args.resume_path:
ckpt = torch.load(args.resume_path, map_location=args.device)
policy.load_state_dict(ckpt["model"])
train_envs.set_obs_rms(ckpt["obs_rms"])
test_envs.set_obs_rms(ckpt["obs_rms"])
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ppo"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
state = {"model": policy.state_dict()}
torch.save(state, os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
save_best_fn=save_best_fn,
logger=logger,
test_in_train=False,
)
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
# test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == '__main__':
test_ppo()