-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtransformer_code.py
279 lines (220 loc) · 9.31 KB
/
transformer_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Transformer implementation adapted from
https://github.com/facebookresearch/grounded-video-description/blob/master/misc/transformer.py
"""
import torch
import math
from torch import nn
from torch.nn import functional as F
INF = 1e10
def matmul(x, y):
if x.dim() == y.dim():
return torch.matmul(x, y)
if x.dim() == y.dim() - 1:
return torch.matmul(x.unsqueeze(-2), y).squeeze(-2)
return torch.matmul(x, y.unsqueeze(-2)).squeeze(-2)
class ResidualBlock(nn.Module):
def __init__(self, layer, d_model, drop_ratio):
super(ResidualBlock, self).__init__()
self.layer = layer
self.dropout = nn.Dropout(drop_ratio)
# self.layernorm = LayerNorm(d_model)
self.layernorm = nn.LayerNorm(d_model)
def forward(self, *x):
return self.layernorm(x[0] + self.dropout(self.layer(*x)))
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super(Attention, self).__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = matmul(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri.cuda(key.get_device())
dot_products.data.sub_(tri.unsqueeze(0))
return matmul(self.dropout(F.softmax(dot_products / self.scale, dim=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super(MultiHead, self).__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (
x.chunk(self.n_heads, -1) for x in (query, key, value))
return self.wo(torch.cat([self.attention(q, k, v)
for q, k, v in zip(query, key, value)], -1))
class FeedForward(nn.Module):
def __init__(self, d_model, d_hidden):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_hidden)
self.linear2 = nn.Linear(d_hidden, d_model)
def forward(self, x):
return self.linear2(F.relu(self.linear1(x)))
class EncoderLayer(nn.Module):
def __init__(self, d_model, d_hidden, n_heads, drop_ratio):
super(EncoderLayer, self).__init__()
self.selfattn = ResidualBlock(
MultiHead(d_model, d_model, n_heads, drop_ratio),
d_model, drop_ratio)
self.feedforward = ResidualBlock(FeedForward(d_model, d_hidden),
d_model, drop_ratio)
def forward(self, x):
return self.feedforward(self.selfattn(x, x, x))
class Encoder(nn.Module):
def __init__(self, d_model, d_hidden, n_vocab, n_layers, n_heads,
drop_ratio, pe):
super(Encoder, self).__init__()
# self.linear = nn.Linear(d_model*2, d_model)
self.layers = nn.ModuleList(
[EncoderLayer(d_model, d_hidden, n_heads, drop_ratio)
for i in range(n_layers)])
self.dropout = nn.Dropout(drop_ratio)
self.pe = pe
def forward(self, x, mask=None):
# x = self.linear(x)
if self.pe:
# spatial configuration is already encoded
# x = x+positional_encodings_like(x)
raise NotImplementedError
# x = self.dropout(x) # dropout is already in the pool_embed layer
if mask is not None:
x = x*mask
encoding = []
for layer in self.layers:
x = layer(x)
if mask is not None:
x = x*mask
encoding.append(x)
return encoding
class RelAttention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super().__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value, pe_k, pe_v):
"""
query, key, value: B x N x 214
pe_k: B x N x N x 214
"""
dot_products = matmul(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri.cuda(key.get_device())
dot_products.data.sub_(tri.unsqueeze(0))
# new_dp = matmul(query, pe_k.transpose(2, 3))
new_dp = pe_k.squeeze(-1)
assert new_dp.shape == dot_products.shape
new_dot_prods = (dot_products + new_dp) / self.scale
attn = self.dropout(F.softmax(new_dot_prods, dim=-1))
out_v = matmul(attn, value)
# new_out_v = matmul(attn, pe_v)
# new_out_v = pe_v
new_outs = out_v
return new_outs
class RelMultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False, d_pe=None):
super().__init__()
self.attention = RelAttention(d_key, drop_ratio, causal=causal)
self.n_heads = n_heads
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
# self.wpk = nn.Linear(d_pe, self.n_heads, bias=False)
# self.wpv = nn.Linear(d_pe, self.n_heads, bias=False)
def forward(self, query, key, value, pe=None):
"""
pe is B x N x N x 1 position difference
"""
query, key, value = self.wq(query), self.wk(key), self.wv(value)
pe_k, pe_v = pe, pe
query, key, value, pe_k, pe_v = (
x.chunk(self.n_heads, -1) for x in (query, key, value, pe_k, pe_v))
return self.wo(torch.cat([self.attention(q, k, v, pk, pv)
for q, k, v, pk, pv in
zip(query, key, value, pe_k, pe_v)], -1))
class RelEncoderLayer(nn.Module):
def __init__(self, d_model, d_hidden, n_heads,
drop_ratio, d_pe=None, sa=True):
super().__init__()
self.selfattn = ResidualBlock(
RelMultiHead(d_model, d_model, n_heads, drop_ratio, d_pe=d_pe),
d_model, drop_ratio)
self.feedforward = ResidualBlock(FeedForward(d_model, d_hidden),
d_model, drop_ratio)
self.sa = sa
def forward(self, x, pe=None):
if not isinstance(x, dict):
return self.feedforward(self.selfattn(x, x, x, pe))
else:
assert not self.sa
assert isinstance(x, dict)
assert 'query' in x
assert 'key' in x
assert 'value' in x
return self.feedforward(
self.selfattn(x['query'], x['key'], x['value'], pe)
)
class RelEncoder(nn.Module):
def __init__(self, d_model, d_hidden, n_vocab, n_layers, n_heads,
drop_ratio, pe, d_pe, sa=True):
super().__init__()
# self.linear = nn.Linear(d_model*2, d_model)
self.layers = nn.ModuleList(
[RelEncoderLayer(d_model, d_hidden, n_heads, drop_ratio, d_pe=d_pe, sa=sa)
for i in range(n_layers)])
self.dropout = nn.Dropout(drop_ratio)
self.pe = pe
def forward(self, x, x_pe, mask=None):
# x = self.linear(x)
if self.pe:
# spatial configuration is already encoded
raise NotImplementedError
# x = self.dropout(x) # dropout is already in the pool_embed layer
if mask is not None:
x = x*mask
encoding = []
for layer in self.layers:
x = layer(x, pe=x_pe)
if mask is not None:
x = x*mask
encoding.append(x)
return encoding
class Transformer(nn.Module):
def __init__(self, d_model, n_vocab_src, vocab_trg, d_hidden=2048,
n_layers=6, n_heads=8, drop_ratio=0.1, pe=False):
super(Transformer, self).__init__()
self.encoder = Encoder(d_model, d_hidden, n_vocab_src, n_layers,
n_heads, drop_ratio, pe)
def forward(self, x):
encoding = self.encoder(x)
return encoding[-1]
# return encoding[-1], encoding
# return torch.cat(encoding, 2)
def all_outputs(self, x):
encoding = self.encoder(x)
return encoding
class RelTransformer(nn.Module):
def __init__(self, d_model, n_vocab_src, vocab_trg, d_hidden=2048,
n_layers=6, n_heads=8, drop_ratio=0.1, pe=False, d_pe=None):
super().__init__()
self.encoder = RelEncoder(d_model, d_hidden, n_vocab_src, n_layers,
n_heads, drop_ratio, pe, d_pe=d_pe)
def forward(self, x, x_pe):
encoding = self.encoder(x, x_pe)
return encoding[-1]
# return encoding[-1], encoding
# return torch.cat(encoding, 2)
def all_outputs(self, x):
encoding = self.encoder(x)
return encoding