-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmdl_conc_sep.py
447 lines (361 loc) · 14.6 KB
/
mdl_conc_sep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
"""
Take care of SEP case.
"""
from mdl_conc_single import ConcBase
import torch
from torch import nn
from torch.nn import functional as F
from mdl_srl_utils import combine_first_ax
from box_utils import bbox_overlaps
class ConcSEP(ConcBase):
def conc_encode(self, conc_feats, inp):
nfrm = self.num_sampled_frm
nppf = self.num_prop_per_frm
ncmp = inp['new_srl_idxs'].size(1)
return self.conc_encode_item(conc_feats, inp, nfrm, nppf, ncmp)
def simple_obj_interact_input(self, prop_seg_feats, inp):
B, num_cmp, num_props, psdim = prop_seg_feats.shape
return self.simple_obj_interact(
prop_seg_feats, inp,
num_cmp, self.num_sampled_frm,
self.num_prop_per_frm
)
def set_args_conc(self):
self.nfrms = self.num_sampled_frm
self.nppf = self.num_prop_per_frm
def get_num_cmp_msk(self, inp, out_shape):
num_cmp = inp['new_srl_idxs'].size(1)
B, num_verbs, num_srl_args, seq_len = inp['srl_arg_words_ind'].shape
num_cmp_msk = inp['num_cmp_msk'].view(
B, num_cmp, 1, 1
).expand(
B, num_cmp, num_srl_args,
self.num_sampled_frm * self.num_prop_per_frm
).contiguous(
).view(*out_shape)
return num_cmp_msk
def concat_prop_seg_feats(self, prop_feats, seg_feats, inp):
B, num_cmp, num_props, pdim = prop_feats.shape
prop_seg_feats = torch.cat(
[
prop_feats.view(
B, num_cmp, self.num_sampled_frm,
self.num_prop_per_frm, prop_feats.size(-1)
),
seg_feats.unsqueeze(-2).expand(
B, num_cmp, self.num_sampled_frm,
self.num_prop_per_frm, seg_feats.size(-1)
)
], dim=-1
).view(
B, num_cmp, self.num_sampled_frm*self.num_prop_per_frm,
prop_feats.size(-1) + seg_feats.size(-1)
)
# B x num_cmp x nfrm*nppf x psdim
return prop_seg_feats
def compute_fin_scores(self, conc_out_dict, inp, vidf_outs=None):
"""
output fin scores should be of shape
B x num_cmp
prop_scores: B x num_cmp x num_srl_args x num_props
"""
prop_scores1 = conc_out_dict['conc_feats_out'].clone().detach()
prop_scores = torch.sigmoid(prop_scores1)
# prop_scores = prop_scores1
if self.cfg.mdl.use_vis_msk:
# B x num_cmp x num_srl_args
prop_scores_max_boxes, _ = torch.max(prop_scores, dim=-1)
# B x num_cmp x num_srl_args
srl_arg_inds_msk = inp['srl_arg_inds_msk'].float()
B, num_verbs, num_srl_args = srl_arg_inds_msk.shape
num_cmp = prop_scores.size(1)
if vidf_outs is not None:
# add vidf outs to the verb places
vidf_outs = torch.sigmoid(vidf_outs)
# B x num_cmp -> B x num_cmp x num_srl_args
vidf_outs = vidf_outs.unsqueeze(-1).expand(
*prop_scores_max_boxes.shape
)
vmsk = inp['verb_ind_in_srl']
if vmsk.size(1) == 1 and num_cmp > 1:
vmsk = vmsk.expand(-1, num_cmp)
# B x num_cmp
vmsk = vmsk.view(
B, num_cmp, 1).expand(
B, num_cmp, num_srl_args
)
prop_scores_max_boxes.scatter_(
dim=2,
index=vmsk,
src=vidf_outs
)
prop_scores_max_boxes = prop_scores_max_boxes * srl_arg_inds_msk
# b x num_cmp
fin_scores_eval = prop_scores_max_boxes.sum(
dim=-1) / srl_arg_inds_msk.sum(dim=-1)
verb_msk = inp['num_cmp_msk']
fin_scores_eval = fin_scores_eval * verb_msk.float()
fin_scores_loss = prop_scores_max_boxes * verb_msk.unsqueeze(
-1).expand(*prop_scores_max_boxes.shape).float()
return {
# B x num_cmp
'fin_scores_eval': fin_scores_eval,
# B x num_cmp x num_srl_args
'fin_scores_loss': fin_scores_loss
}
else:
# B x num_cmp x num_cmp x num_srl_args
prop_scores_max_boxes, _ = torch.max(prop_scores, dim=-1)
# B x num_cmp x num_cmp
fin_scores = prop_scores_max_boxes.sum(dim=-1)
return fin_scores
def forward(self, inp):
"""
Main difference is that prop feats/seg features
have an extra dimension
"""
# B x 6 x 5 x 40
# 6 is num_cmp for a sent
# 5 is num args in a sent
# 40 is seq length for each arg
B, num_verbs, num_srl_args, seq_len = inp['srl_arg_words_ind'].shape
# B*num_cmp x seq_len
src_toks = self.get_srl_arg_seq_to_sent_seq(inp)
# B*num_cmp x seq_len
src_lens = inp['srl_arg_word_mask_len'].view(B*num_verbs, -1)
# B*num_cmp x seq_len x 256
lstm_outs = self.lang_encode(src_toks, src_lens)
lstm_encoded = lstm_outs['lstm_full_output']
# B x num_cmp x 5 x 512
srl_arg_lstm_encoded = self.retrieve_srl_arg_from_lang_encode(
lstm_encoded, inp
)
# Get visual features
# B x num_cmp x 1000 x 512
prop_feats = self.prop_feats_encode(inp)
# B, num_cmp, num_props, pdim = prop_feats.shape
# Get seg features
# B x num_cmp x 10 x 512
seg_feats = self.seg_feats_encode(inp)
# B x num_cmp x nfrm*nppf x psdim
prop_seg_feats = self.concat_prop_seg_feats(prop_feats, seg_feats, inp)
prop_seg_feats = self.simple_obj_interact_input(
prop_seg_feats, inp
)
num_cmp = inp['new_srl_idxs'].size(1)
if srl_arg_lstm_encoded.size(1) == 1 and num_cmp > 1:
srl_arg_lstm_encoded = srl_arg_lstm_encoded.expand(
-1, num_cmp, -1, -1
)
conc_feats = self.concate_vis_lang_feats(
prop_seg_feats, srl_arg_lstm_encoded
)
# B x num_cmp x num_srl_args x num_props
conc_feats_out_dict = self.conc_encode(conc_feats, inp)
conc_feats_out = conc_feats_out_dict['conc_feats_out']
seg_feats_for_verb, verb_feats = self.get_seg_verb_feats_to_process(
seg_feats, srl_arg_lstm_encoded, lstm_outs, inp
)
if verb_feats.size(1) == 1 and num_cmp > 1:
verb_feats = verb_feats.expand(-1, num_cmp, -1)
# B x num_cmp
vidf_outs = self.compute_seg_verb_feats_out(
seg_feats_for_verb, verb_feats
)
fin_scores = self.compute_fin_scores(
conc_feats_out_dict, inp, vidf_outs
)
num_cmp_msk = self.get_num_cmp_msk(inp, conc_feats_out.shape)
srl_ind_msk = inp['srl_arg_inds_msk']
if srl_ind_msk.size(1) == 1 and num_cmp > 1:
srl_ind_msk = srl_ind_msk.expand(
-1, num_cmp, -1, -1
)
srl_ind_msk = srl_ind_msk.unsqueeze(-1).expand(
*conc_feats_out.shape)
mdl_outs_eval = torch.sigmoid(
conc_feats_out) * srl_ind_msk.float() * num_cmp_msk.float()
return {
'mdl_outs': conc_feats_out,
'mdl_outs_eval': mdl_outs_eval,
'vidf_outs': vidf_outs,
'fin_scores_loss': fin_scores['fin_scores_loss'],
'fin_scores': fin_scores['fin_scores_eval']
}
class LossB_SEP(nn.Module):
"""
Loss Function (for a batch) for SEP case.
Specifically, we need to have a separate verb loss
Also, handling of some functions is different
from single video case
"""
def __init__(self, cfg, comm):
super().__init__()
self.cfg = cfg
self.comm = comm
self.loss_keys = ['loss', 'mdl_out_loss', 'verb_loss']
self.loss_lambda = self.cfg.loss.loss_lambda
self.after_init()
def after_init(self):
pass
def get_targets_from_overlaps(self, overlaps, inp):
"""
Use the given overlaps to produce the targets
overlaps: B x num_cmp x 1000 x 100
"""
targets = overlaps
srl_boxes = inp['srl_boxes']
B, num_verbs, num_srl_args, num_box_per_srl = srl_boxes.shape
B, num_cmp, num_props, num_gt_box = targets.shape
if num_verbs == 1 and num_cmp > 1:
srl_boxes = srl_boxes.expand(-1, num_cmp, -1, -1)
srl_boxes_reshaped = srl_boxes.view(
B, num_cmp, num_srl_args, 1, num_box_per_srl).expand(
B, num_cmp, num_srl_args, num_props, num_box_per_srl)
targets_reshaped = targets.view(
B, num_cmp, 1, num_props, num_gt_box).expand(
B, num_cmp, num_srl_args, num_props, num_gt_box)
# Choose only those proposals which are ground-truth
# for given srl
targets_to_use = torch.gather(
targets_reshaped, dim=-1, index=srl_boxes_reshaped)
srl_boxes_lens = inp['srl_boxes_lens']
targets_to_use = (
targets_to_use * srl_boxes_lens.float().unsqueeze(
-2).expand(*targets_to_use.shape)
)
targets_to_use = targets_to_use.max(dim=-1)[0] > 0.5
return targets_to_use
def compute_overlaps(self, inp):
pad_props = inp['pad_proposals']
gt_bboxs = inp['pad_gt_bboxs']
frm_msk = inp['pad_frm_mask']
pnt_msk = inp['pad_pnt_mask']
assert len(pnt_msk.shape) == 3
B = pad_props.size(0)
num_cmp = pad_props.size(1)
pad_props = combine_first_ax(pad_props)
gt_bboxs = combine_first_ax(gt_bboxs)
frm_msk = combine_first_ax(frm_msk)
pnt_msk = combine_first_ax(pnt_msk)
overlaps = bbox_overlaps(
pad_props, gt_bboxs,
(frm_msk | pnt_msk[:, :].unsqueeze(-1)))
overlaps = overlaps.view(B, num_cmp, *overlaps.shape[1:])
return overlaps
def compute_loss_targets(self, inp):
"""
Compute the targets, based on iou
overlaps
"""
overlaps = self.compute_overlaps(inp)
B, ncmp, nprop, ngt = overlaps.shape
overlaps_msk = overlaps.new_zeros(*overlaps.shape)
targ_cmp = inp['target_cmp']
# overlaps_msk[:, targ_cmp, ...] = 1
overlaps_msk.scatter_(
dim=1,
index=targ_cmp.view(B, 1, 1, 1).expand(B, ncmp, nprop, ngt),
src=overlaps_msk.new_ones(*overlaps_msk.shape)
)
overlaps_one_targ = overlaps * overlaps_msk
targets_one = self.get_targets_from_overlaps(overlaps_one_targ, inp)
targets_all = self.get_targets_from_overlaps(overlaps, inp)
return {
'targets_one': targets_one,
'targets_all': targets_all
}
def compute_mdl_loss(self, mdl_outs, targets_one, inp):
weights = None
tot_loss = F.binary_cross_entropy_with_logits(
mdl_outs, target=targets_one.float(),
weight=weights,
reduction='none'
)
# B x num_cmp
num_cmp_msk = inp['num_cmp_msk']
num_cmp = num_cmp_msk.size(1)
srl_arg_boxes_mask = inp['srl_arg_boxes_mask']
num_verbs = srl_arg_boxes_mask.size(1)
if num_verbs == 1 and num_cmp > 1:
srl_arg_boxes_mask = srl_arg_boxes_mask.expand(-1, num_cmp, -1)
B, num_cmp, num_srl_args = srl_arg_boxes_mask.shape
boxes_msk = num_cmp_msk.unsqueeze(
-1).expand(*srl_arg_boxes_mask.shape).float()
# B x num_cmp x num_srl_args -> B x num_cmp x num_srl x 1000
boxes_msk = boxes_msk.unsqueeze(
-1).expand(*targets_one.shape)
tot_loss = tot_loss * boxes_msk
multiplier = tot_loss.size(-1)
if srl_arg_boxes_mask.max() > 0:
out_loss = torch.masked_select(tot_loss, boxes_msk.byte())
else:
# TODO: NEED TO check what is wrong here
out_loss = tot_loss
mdl_out_loss = out_loss.mean() * multiplier
return mdl_out_loss
def compute_vidf_loss_simple(self, vidf_outs, inp):
"""
vidf_outs are fin scores: B x ncmp x nfrms
"""
B, ncmp, nfrm = vidf_outs.shape
targs = vidf_outs.new_zeros(*vidf_outs.shape)
targ_cmp = inp['target_cmp']
targs.scatter_(
dim=1,
index=targ_cmp.view(B, 1, 1).expand(B, ncmp, nfrm),
src=targs.new_ones(*targs.shape)
)
# B x ncmp x nfrms
out_loss = F.binary_cross_entropy(vidf_outs, targs, reduction='none')
mult = 1. / nfrm
# B x ncmp
msk = inp['num_cmp_msk']
out_loss = torch.masked_select(out_loss.sum(dim=-1) * msk.float(),
msk.byte()) * mult
return out_loss.mean()
def compute_vidf_loss(self, vidf_outs, inp):
B, num_cmp, num_srl_args = vidf_outs.shape
box_msk = inp['srl_arg_boxes_mask']
srl_arg_ind_msk = inp['srl_arg_inds_msk']
vidf_outs = ((vidf_outs * box_msk.float()).sum(dim=-1) /
srl_arg_ind_msk.sum(dim=-1).float())
vidf_targs = vidf_outs.new_zeros(*vidf_outs.shape)
targ_cmp = inp['target_cmp']
vidf_targs.scatter_(
dim=1,
index=targ_cmp.unsqueeze(-1).expand(*vidf_targs.shape),
src=vidf_targs.new_ones(*vidf_targs.shape)
)
vidf_loss = F.binary_cross_entropy( #
vidf_outs, vidf_targs,
reduction='none'
)
msk = inp['num_cmp_msk']
vidf_loss = vidf_loss * msk.float()
vidf_loss = torch.masked_select(vidf_loss, msk.byte())
return vidf_loss.mean()
def forward(self, out, inp):
targets_all = self.compute_loss_targets(inp)
targets_n = targets_all['targets_one']
mdl_outs = out['mdl_outs']
mdl_out_loss = self.compute_mdl_loss(mdl_outs, targets_n, inp)
verb_outs = out['vidf_outs']
verb_loss = F.binary_cross_entropy_with_logits(
verb_outs,
inp['verb_cmp'].float(),
reduction='none'
)
vcc_msk = inp['verb_cross_cmp_msk'].float()
vcc_msk = (vcc_msk.sum(dim=-1) > 0).float()
verb_loss = verb_loss * vcc_msk
verb_loss = torch.masked_select(
verb_loss, vcc_msk.byte()).mean()
# out_loss = mdl_out_loss + verb_loss
out_loss = mdl_out_loss
out_loss_dict = {
'loss': out_loss,
'mdl_out_loss': mdl_out_loss,
'verb_loss': verb_loss
}
return {k: v * self.loss_lambda for k, v in out_loss_dict.items()}