-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcontrastive_sampling.py
493 lines (428 loc) · 17.5 KB
/
contrastive_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
"""
To create the 4-way dataset
Main motivation:
Currently, not sure if the models ground
based only on object name, or is it really
learning the roles of the visual elements
correctly.
Thus, we create 4-way dataset, for every
data which has S-V-O statistics, we generate
counterfactuals (not sure if this is
the correct name or not). For every image
containing say S1-V1-O1, present it with other
images with the characteristics S2-V1-O1,
S1-V2-O1, S1-V1-O2 as well. Some can be
reduced in case only S-V or O-V are present
More generally, we would like to create a
counterfactuals for anything that can
provide evidence.
Additionally, need to check
- [x] Location words shouldn't be present
- [x] Perform VERB lemmatization
- [x] Distinguish between what is groundable and
what is not
- [x] Check the groundable verbs
"""
from pathlib import Path
import pandas as pd
from tqdm.auto import tqdm
from collections import Counter
import json
import copy
import ast
import numpy as np
from _init_stuff import CN, yaml
from typing import List
np.random.seed(seed=5)
def create_random_list(cfg, srl_annots, ann_row_idx):
"""
Returns 4 random videos
"""
srl_idxs_possible = np.array(srl_annots.index)
vid_segs = srl_annots.vid_seg
vid_seg = vid_segs.loc[ann_row_idx]
srl_row = srl_annots.loc[ann_row_idx]
req_cls_pats = srl_row.req_cls_pats
req_cls_pats_mask = srl_row.req_cls_pats_mask
args_to_use = set(['V', 'ARG0', 'ARG1', 'ARG2', 'ARGM-LOC'])
arg_keys_vis_present = []
arg_keys_lang_present = []
for srl_arg, srl_arg_mask in zip(req_cls_pats, req_cls_pats_mask):
arg_key = srl_arg[0]
arg_keys_lang_present.append(arg_key)
if arg_key == 'V' or arg_key in args_to_use:
arg_keys_vis_present.append(arg_key)
ds4_msk = {}
inds_to_use = {}
num_arg_keys_vis = len(arg_keys_vis_present)
other_anns = np.random.choice(
srl_idxs_possible, size=10 * num_arg_keys_vis,
replace=False
).reshape(num_arg_keys_vis, 10)
for aind, arg_key1 in enumerate(arg_keys_vis_present):
in1 = other_anns[aind].tolist()
assert len(in1) == 10
set1 = set(in1)
set_int = [s for s in set1 if
vid_segs.loc[s] != vid_seg]
# TODO:
# Make replace false, currently true
# because some have low chances of
# appearing
assert len(set_int) > 0
inds_to_use[arg_key1] = set_int
ds4_msk[arg_key1] = 1
return inds_to_use, ds4_msk
def create_similar_list_new(cfg, arg_dicts, srl_annots, ann_row_idx):
"""
Does it for one row. Assumes annotations
exists and can be retrieved via `self`.
The logic:
Each input idx has ARG0, V, ARG1 ...,
(1) Pivot across one argument, say ARG0
(2) Retrieve all other indices such that they
have different ARG0, but same V, ARG1 ... (do
each of them separately)
(3) To retrieve those indices with V, ARG1 same
we can just do intersection of the two sets
To facilitate (2), we first create separate
dictionaries for each V, ARG1 etc. and then
just reference them via self.create_dicts
"""
srl_idxs_possible = np.array(srl_annots.index)
vid_segs = srl_annots.vid_seg
vid_seg = vid_segs.loc[ann_row_idx]
srl_row = srl_annots.loc[ann_row_idx]
req_cls_pats = srl_row.req_cls_pats
req_cls_pats_mask = srl_row.req_cls_pats_mask
args_to_use = set(['V', 'ARG0', 'ARG1', 'ARG2', 'ARGM-LOC'])
some_inds = {}
arg_keys_vis_present = []
arg_keys_lang_present = []
for srl_arg, srl_arg_mask in zip(req_cls_pats, req_cls_pats_mask):
arg_key = srl_arg[0]
arg_keys_lang_present.append(arg_key)
if arg_key == 'V' or arg_key in args_to_use:
arg_keys_vis_present.append(arg_key)
if arg_key in args_to_use:
lemma_key = 'lemma_{}'.format(
arg_key.replace('-', '_').replace('V', 'verb'))
lemma_arg = srl_row[lemma_key]
if isinstance(lemma_arg, list):
assert all([le_arg in arg_dicts[arg_key]
for le_arg in lemma_arg])
if len(lemma_arg) >= 1:
le_arg = lemma_arg
else:
le_arg = cfg.ds.none_word
else:
le_arg = [lemma_arg]
# srl_ind_list = copy.deepcopy(
# arg_dicts[arg_key][le_arg])
# srl_ind_list = arg_dicts[arg_key][le_arg][:]
for le_ar in le_arg:
srl_ind_list = arg_dicts[arg_key][le_ar][:]
srl_ind_list.remove(ann_row_idx)
if arg_key not in some_inds:
some_inds[arg_key] = []
some_inds[arg_key] += srl_ind_list
# # If not groundable but in args_to_use
# else:
# pass
num_arg_keys_vis = len(arg_keys_vis_present)
other_anns = np.random.choice(
srl_idxs_possible, size=10 * num_arg_keys_vis,
replace=False
).reshape(num_arg_keys_vis, 10)
inds_to_use = {}
ds4_msk = {}
for aind, arg_key1 in enumerate(arg_keys_vis_present):
arg_key_to_use = [
ak for ak in arg_keys_vis_present if ak != arg_key1]
set1 = set(some_inds[arg_key_to_use[0]])
set_int1 = set1.intersection(
*[set(some_inds[ak]) for ak in arg_key_to_use[1:]])
curr_set = set(some_inds[arg_key1])
set_int2 = list(set_int1 - curr_set)
set_int = [s for s in set_int2 if
vid_segs.loc[s] != vid_seg]
# TODO:
# Make replace false, currently true
# because some have low chances of
# appearing
if len(set_int) == 0:
# this means similar scenario not found
# inds
ds4_msk[arg_key1] = 0
inds_to_use[arg_key1] = other_anns[aind].tolist()
# inds_to_use[arg_key1] = [-1]
# cfg.ouch += 1
# print('ouch')
else:
ds4_msk[arg_key1] = 1
inds_to_use[arg_key1] = np.random.choice(
set_int, 10, replace=True).tolist()
# cfg.yolo += 1
# print('yolo')
# inds_to_use_lens = [len(v) if v[0] != -1 else 0 for k,
# v in inds_to_use.items()]
# if sum(inds_to_use_lens) == 0:
# cfg.ouch2 += 1
# else:
# cfg.yolo2 += 1
return inds_to_use, ds4_msk
def create_similar_list(cfg, arg_dicts, srl_annots, ann_row_idx):
"""
Does it for one row. Assumes annotations
exists and can be retrieved via `self`.
The logic:
Each input idx has ARG0, V, ARG1 ...,
(1) Pivot across one argument, say ARG0
(2) Retrieve all other indices such that they
have different ARG0, but same V, ARG1 ... (do
each of them separately)
(3) To retrieve those indices with V, ARG1 same
we can just do intersection of the two sets
To facilitate (2), we first create separate
dictionaries for each V, ARG1 etc. and then
just reference them via self.create_dicts
"""
srl_idxs_possible = np.array(srl_annots.index)
vid_segs = srl_annots.vid_seg
vid_seg = vid_segs.loc[ann_row_idx]
srl_row = srl_annots.loc[ann_row_idx]
req_cls_pats = srl_row.req_cls_pats
req_cls_pats_mask = srl_row.req_cls_pats_mask
args_to_use = set(['V', 'ARG0', 'ARG1', 'ARG2', 'ARGM-LOC'])
some_inds = {}
arg_keys_vis_present = []
arg_keys_lang_present = []
for srl_arg, srl_arg_mask in zip(req_cls_pats, req_cls_pats_mask):
arg_key = srl_arg[0]
arg_keys_lang_present.append(arg_key)
if arg_key == 'V' or arg_key in args_to_use:
arg_keys_vis_present.append(arg_key)
if arg_key in args_to_use:
lemma_key = 'lemma_{}'.format(
arg_key.replace('-', '_').replace('V', 'verb'))
lemma_arg = srl_row[lemma_key]
if isinstance(lemma_arg, list):
assert all([le_arg in arg_dicts[arg_key]
for le_arg in lemma_arg])
if len(lemma_arg) >= 1:
le_arg = lemma_arg[0]
else:
le_arg = cfg.ds.none_word
else:
le_arg = lemma_arg
# srl_ind_list = copy.deepcopy(
# arg_dicts[arg_key][le_arg])
# srl_ind_list = arg_dicts[arg_key][le_arg][:]
srl_ind_list = arg_dicts[arg_key][le_arg][:]
srl_ind_list.remove(ann_row_idx)
if arg_key not in some_inds:
some_inds[arg_key] = []
some_inds[arg_key] += srl_ind_list
# # If not groundable but in args_to_use
# else:
# pass
num_arg_keys_vis = len(arg_keys_vis_present)
other_anns = np.random.choice(
srl_idxs_possible, size=10 * num_arg_keys_vis,
replace=False
).reshape(num_arg_keys_vis, 10)
inds_to_use = {}
ds4_msk = {}
for aind, arg_key1 in enumerate(arg_keys_vis_present):
arg_key_to_use = [
ak for ak in arg_keys_vis_present if ak != arg_key1]
set1 = set(some_inds[arg_key_to_use[0]])
set_int1 = set1.intersection(
*[set(some_inds[ak]) for ak in arg_key_to_use[1:]])
curr_set = set(some_inds[arg_key1])
set_int2 = list(set_int1 - curr_set)
set_int = [s for s in set_int2 if
vid_segs.loc[s] != vid_seg]
# TODO:
# Make replace false, currently true
# because some have low chances of
# appearing
if len(set_int) == 0:
# this means similar scenario not found
# inds
ds4_msk[arg_key1] = 0
inds_to_use[arg_key1] = other_anns[aind].tolist()
# inds_to_use[arg_key1] = [-1]
# cfg.ouch += 1
# print('ouch')
else:
ds4_msk[arg_key1] = 1
inds_to_use[arg_key1] = np.random.choice(
set_int, 10, replace=True).tolist()
# cfg.yolo += 1
# print('yolo')
# inds_to_use_lens = [len(v) if v[0] != -1 else 0 for k,
# v in inds_to_use.items()]
# if sum(inds_to_use_lens) == 0:
# cfg.ouch2 += 1
# else:
# cfg.yolo2 += 1
return inds_to_use, ds4_msk
class AnetDSCreator:
def __init__(self, cfg, tdir='.'):
self.cfg = cfg
self.tdir = Path(tdir)
def fix_via_ast(self, df):
for k in df.columns:
first_word = df.iloc[0][k]
if isinstance(first_word, str) and (first_word[0] in '[{'):
df[k] = df[k].apply(
lambda x: ast.literal_eval(x))
return df
def get_stats(self, req_args):
"""
Gets the counts for the argument types
"""
c = Counter()
if isinstance(req_args[0], list):
for x in req_args:
c += Counter(x)
else:
c = Counter(req_args)
return c.most_common()
def create_all_similar_lists(self):
self.create_similar_lists(split_type='train')
self.create_similar_lists(split_type='valid')
def create_similar_lists(self, split_type: str = 'train'):
"""
need to check if only
creating for the validation
set would be enough or not.
Basically, for each input,
generates list of other inputs (idxs)
which have same S,V,O (at least one is same)
"""
if split_type == 'train':
srl_annot_file = self.tdir / self.cfg.ds.trn_verb_ent_file
ds4_dict_file = self.tdir / self.cfg.ds.trn_ds4_dicts
ds4_ind_file = self.tdir / self.cfg.ds.trn_ds4_inds
elif split_type == 'valid':
srl_annot_file = self.tdir / self.cfg.ds.val_verb_ent_file
ds4_dict_file = self.tdir / self.cfg.ds.val_ds4_dicts
ds4_ind_file = self.tdir / self.cfg.ds.val_ds4_inds
elif split_type == 'trn_val':
srl_annot_file = self.tdir / self.cfg.ds.verb_ent_file
ds4_dict_file = self.tdir / self.cfg.ds.ds4_dicts
ds4_ind_file = self.tdir / self.cfg.ds.ds4_inds
elif split_type == 'only_val':
srl_annot_file = Path('./data/anet_verb/val_1_verb_ent_file.csv')
ds4_dict_file = Path(
'./data/anet_verb/val_1_srl_args_dict_obj_to_ind.json'
)
else:
raise NotImplementedError
# elif split_type == 'test':
# srl_annot_file = self.tdir / self.cfg.ds.test_verb_ent_file
# ds4_dict_file = self.tdir / self.cfg.ds.test_ds4_dicts
# ds4_ind_file = self.tdir / self.cfg.ds.test_ds4_inds
# elif split_type == 'val_test':
# # validation file with validation+test indices
# srl_annot_file = self.tdir / self.cfg.ds.test_verb_ent_file
# ds4_dict_file = self.tdir / self.cfg.ds.test_ds4_dicts
# ds4_ind_file = self.tdir / self.cfg.ds.test_ds4_inds
# elif split_type == 'test_val':
# # test file with validation+test indices
# srl_annot_file = self.tdir / self.cfg.ds.test_verb_ent_file
# ds4_dict_file = self.tdir / self.cfg.ds.test_ds4_dicts
# ds4_ind_file = self.tdir / self.cfg.ds.test_ds4_inds
# else:
# raise NotImplementedError
srl_annots = self.fix_via_ast(pd.read_csv(srl_annot_file))
self.create_dicts_srl(srl_annots, ds4_dict_file)
arg_dicts = json.load(open(ds4_dict_file))
srl_annots_copy = copy.deepcopy(srl_annots)
# inds_to_use_list = [self.create_similar_list(
# row_ind) for row_ind in tqdm(range(len(self.srl_annots)))]
inds_to_use_list = []
ds4_msk = []
rand_inds_to_use_list = []
for row_ind in tqdm(range(len(srl_annots))):
inds_to_use, ds4_msk_out = create_similar_list(
self.cfg, arg_dicts, srl_annots, row_ind)
ds4_msk.append(ds4_msk_out)
inds_to_use_list.append(inds_to_use)
rand_inds_to_use, _ = create_random_list(
self.cfg, srl_annots, row_ind
)
rand_inds_to_use_list.append(rand_inds_to_use)
srl_annots_copy['DS4_Inds'] = inds_to_use_list
srl_annots_copy['ds4_msk'] = ds4_msk
srl_annots_copy['RandDS4_Inds'] = rand_inds_to_use_list
# srl_annots_copy = srl_annots_copy.iloc[ds4_msk]
srl_annots_copy.to_csv(
ds4_ind_file, index=False, header=True)
# srl_annots_copy.to_csv(
# self.tdir/self.cfg.ds.ds4_inds, index=False, header=True)
# for row_ind in range(len(self.srl_annots)):
# inds_to_use = self.create_similar_list(row_ind)
def create_dicts_srl(self, srl_annots, out_file):
def default_dict_list(key_list, val, dct):
for key in key_list:
if key not in dct:
dct[key] = []
dct[key].append(val)
return dct
# srl_annots = self.srl_annots
# args_dict_out: Dict[str, Dict[obj_name, srl_indices]]
# arg_dict_lemma: Dict[str, List[obj_name]]
args_dict_out = {}
args_to_use = ['ARG0', 'ARG1', 'ARG2', 'ARGM-LOC']
for srl_arg in args_to_use:
args_dict_out[srl_arg] = {}
for row_ind, row in tqdm(srl_annots.iterrows(),
total=len(srl_annots)):
req_cls_pats = row.req_cls_pats
req_cls_pats_mask = row.req_cls_pats_mask
for srl_arg, srl_arg_mask in zip(req_cls_pats, req_cls_pats_mask):
arg_key = srl_arg_mask[0]
if arg_key in args_dict_out:
# The argument is groundable
if srl_arg_mask[1] == 1:
key_list = list(set(srl_arg[1]))
args_dict_out[arg_key] = default_dict_list(
key_list, row_ind, args_dict_out[arg_key])
else:
key_list = [self.cfg.ds.none_word]
args_dict_out[arg_key] = default_dict_list(
key_list, row_ind, args_dict_out[arg_key])
args_dict_out['V'] = {k: list(v.index) for k,
v in srl_annots.groupby('lemma_verb')}
json.dump(args_dict_out, open(out_file, 'w'))
return args_dict_out
def main(splits: List):
if not isinstance(splits, list):
assert isinstance(splits, str)
splits = [splits]
cfg = CN(yaml.safe_load(open('./configs/create_asrl_cfg.yml')))
for split_type in splits:
anet_ds = AnetDSCreator(cfg)
anet_ds.create_similar_lists(split_type=split_type)
if __name__ == '__main__':
import fire
fire.Fire(main)
# cfg = CN(yaml.safe_load(open('./configs/create_asrl_cfg.yml')))
# for split_type in ['valid', 'train']:
# # for split_type in ['only_val', 'valid', 'train', 'trn_val']:
# # cfg.ouch = 0
# # cfg.yolo = 0
# # cfg.ouch2 = 0
# # cfg.yolo2 = 0
# anet_ds = AnetDSCreator(cfg)
# # anet_ds.create_dicts_srl()
# anet_ds.create_similar_lists(split_type=split_type)
# # break
# # anet_ds.create_similar_lists(split_type='trn_val')
# # anet_ds.create_similar_lists(split_type='train')
# # anet_ds.create_similar_lists(split_type='valid')
# # print(cfg.ouch, cfg.yolo, cfg.yolo+cfg.ouch)
# # print(cfg.ouch2, cfg.yolo2, cfg.yolo2+cfg.ouch2)