-
Notifications
You must be signed in to change notification settings - Fork 774
/
Copy pathinference_pmv2_ip_adapter.py
101 lines (80 loc) · 3.2 KB
/
inference_pmv2_ip_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# !pip install opencv-python transformers accelerate
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from photomaker import PhotoMakerStableDiffusionXLPipeline
from photomaker import FaceAnalysis2, analyze_faces
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
prompt = "portrait photo of a woman img, colorful, perfect face, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration), open mouth"
# # initialize the models and pipeline
### Load base model
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0", torch_dtype=torch_dtype,
).to("cuda")
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipe.set_ip_adapter_scale(0.7)
print("Loading images...")
style_images = [load_image(f"./examples/statue.png")]
### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img" # define the trigger word
)
### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="lcm-lora")
# pipe.set_adapters(["photomaker", "lcm-lora"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
### define the input ID images
input_folder_name = './examples/scarletthead_woman'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# generate image
images = pipe(
prompt,
negative_prompt=negative_prompt,
input_id_images=input_id_images,
id_embeds=id_embeds,
ip_adapter_image=[style_images],
num_images_per_prompt=2,
start_merge_step=10,
).images
for idx, img in enumerate(images):
img.save(os.path.join(output_dir, f"output_pmv2_ipa_{idx}.jpg"))