-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBpNetwork.py
155 lines (142 loc) · 5.92 KB
/
BpNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import random
class MapMinMaxApplier(object):
def __init__(self, slope, intercept):
self.slope = slope
self.intercept = intercept
def __call__(self, x):
return x * self.slope + self.intercept
def reverse(self, y):
return (y - self.intercept) / self.slope
def mapminmax(x, ymin=-1, ymax=+1):
x = np.asanyarray(x)
xmax = x.max(axis=-1)
xmin = x.min(axis=-1)
if (xmax == xmin).any():
raise ValueError("some rows have no variation")
slope = ((ymax - ymin) / (xmax - xmin))[:, np.newaxis]
intercept = (-xmin * (ymax - ymin) / (xmax - xmin))[:, np.newaxis] + ymin
ps = MapMinMaxApplier(slope, intercept)
return ps(x), ps
def activate(x,activateFunction='sigmoid'):
if activateFunction=='tansig':
return (1-np.exp(-x))/(1+np.exp(-x))
elif activateFunction=='pureline':
return x
else:
return 1/(1+np.exp(-x.astype(float)))
def deltaActivateFunction(x,activateFunction='sigmoid'):
if activateFunction=='tansig':
return 2*np.exp(-x)/np.square(1+np.exp(-x))
elif activateFunction=='pureline':
return 1
else:
return np.exp(-x)/np.square(1+np.exp(-x))
class bpNet:
learningRate=0.25
momentum=0.9
batch=1
epoches=10000
accuracy=0.1 #normalized RMSE is adopted
numInputNode:int=0
numHiddenNode: int=0
numOutputNode:int=0
activateFunction1='sigmoid' #隐含层激励函数
activateFunction2='pureline' #输出层激励函数
"各层网络的相关数值"
V=[] #输入层到隐含层的权重mx(n+1)
iH=[] #隐含层的局部诱导域,即激活之前的值
H=[] #隐含层激活之后的值mxb
W=[] #隐含层到输出层的权重Lx(m+1)
iO=[] #输出层的局部诱导域
O=[] #输出层激活之后的值
def __init__(self,numInputNode,numOutputNode):
self.numInputNode=numInputNode
self.numOutputNode=numOutputNode
self.numHiddenNode=int(np.sqrt(numInputNode+numOutputNode)+5) #默认采用典型的三层结构
self.V=-1+2*np.random.random([self.numHiddenNode,self.numInputNode+1]) #mx(n+1)
self.W=-1+2*np.random.random([self.numOutputNode,self.numHiddenNode+1]) #Lx(m+1)
def train(self,x,y,batch=1):
'''训练神经网络'''
numbatches=int(x.shape[0]/batch)
W1=np.zeros([self.numOutputNode,self.numHiddenNode+1])
W2=np.zeros([self.numOutputNode,self.numHiddenNode+1])
V1=np.zeros([self.numHiddenNode,self.numInputNode+1])
V2=np.zeros([self.numHiddenNode,self.numInputNode+1])
for i in range(0,self.epoches):
state=np.random.get_state()
np.random.shuffle(x) # 采用随机梯度
np.random.set_state(state)
np.random.shuffle(y)
#前向计算过程
for j in range(0,numbatches):
batchX=x[j*batch:(j+1)*batch,:].T #nxb
batchY=y[j*batch:(j+1)*batch] #Lxb
barX=np.concatenate((batchX,np.ones([1,batch])),axis=0) #加一行偏置(n+1)xb
self.iH=np.dot(self.V,barX) #mxb
self.H=activate(self.iH,self.activateFunction1)
barH=np.concatenate((self.H,np.ones([1,batch])),axis=0) #(m+1)xb
self.iO=self.W@barH #Lxb
self.O=activate(self.iO,self.activateFunction2)
#误差反向传播过程
error=batchY-self.O #Lxb
#delta2=error*(-deltaActivateFunction(self.iO,self.activateFunction2))@np.transpose(barH) #Lx(m+1)
delta2 = error * (-1) @ np.transpose(barH)
self.W=self.W-self.learningRate*delta2+self.momentum*(W1-W2)
W2=W1
W1=self.W
delta1=np.transpose(np.transpose(error*(-1))*self.W[:,range(0,self.numHiddenNode)])*self.H*(1-self.H)*np.transpose(barX)
self.V=self.V-self.learningRate*delta1+self.momentum*(V1-V2)
V2=V1
V1=self.V
batchMSE=np.mean(np.square(error),axis=0)
print(batchMSE)
if batchMSE.max(axis=0)<0.001:
break
def simulate(self,x):
barX = np.concatenate((x, np.ones([1,x.shape[0]])), axis=1)
self.iH=np.dot(self.V,np.transpose(barX))
self.H=activate(self.iH)
barH = np.concatenate((self.H, np.ones([1,self.H.shape[1]])), axis=0)
self.iO=np.dot(self.W,barH)
self.O=self.iO
return self.O
def valize(op):
op[op == 'INLAND'] = 1
op[op == '<1H OCEAN'] = 10
op[op == 'NEAR OCEAN'] = 100
op[op == 'NEAR BAY'] = 1000
op[op == 'ISLAND'] = 10000
return op
def main():
#训练数据和测试数据的预处理
filepath='../ml-homework2/housing_train.csv'
trainData=pd.read_csv(filepath)
op=trainData['ocean_proximity']
op=op.values
op=valize(op)
rawX=pd.concat([trainData.iloc[:,range(0,8)],pd.DataFrame(op)],axis=1)
rawY=trainData.iloc[:,9]
normalX,ps1=mapminmax(np.transpose(rawX.values))
trainX=np.transpose(normalX)
Y = rawY.values
ymin = Y.min(axis=0)
ymax = Y.max(axis=0)
trainY = (Y-ymin) / (ymax - ymin)
filepath = '../ml-homework2/housing_test.csv'
testData = pd.read_csv(filepath)
op = testData['ocean_proximity'].values
op=valize(op)
testX = pd.concat([testData.iloc[:, range(0,8)], pd.DataFrame(op)], axis=1)
testY = testData.iloc[:, 9]
testX=np.transpose(ps1(np.transpose(testX.values)))
net=bpNet(trainX.shape[1],1)
bpNet.train(net,trainX,trainY)
simuY=bpNet.simulate(net,testX)
simuY=simuY*(ymax-ymin)+ymin
rmse=np.sqrt(np.sum(np.square(testY-simuY)/testY)/len(testY)) #normalized RMSE
print(rmse)
if __name__=='__main__':
main()