diff --git a/.gitignore b/.gitignore new file mode 100644 index 00000000000..b23f03ef595 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +sync.sh +main +*.o diff --git a/Makefile b/Makefile new file mode 100644 index 00000000000..50b68e1f0ed --- /dev/null +++ b/Makefile @@ -0,0 +1,109 @@ +main: ggml.o main.o + g++ -o main ggml.o main.o + +ggml.o: ggml.c ggml.h + gcc -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c + +main.o: main.cpp ggml.h + g++ -O3 -std=c++11 -c main.cpp + +# clean up the directory +clean: + rm -f *.o main + +# run the program +run: main + ./main + +# download the following audio samples into folder "./samples": +.PHONY: samples +samples: + @echo "Downloading samples..." + mkdir -p samples + @wget --quiet --show-progress -O samples/gb0.ogg https://upload.wikimedia.org/wikipedia/commons/2/22/George_W._Bush%27s_weekly_radio_address_%28November_1%2C_2008%29.oga + @wget --quiet --show-progress -O samples/gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg + @wget --quiet --show-progress -O samples/hp0.ogg https://upload.wikimedia.org/wikipedia/en/d/d4/En.henryfphillips.ogg + @echo "Converting to 16-bit WAV ..." + @ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav + @ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav + @ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav + +.PHONY: tiny.en +tiny.en: main + @echo "Downloading tiny.en (75 MB just once)" + mkdir -p models + @if [ ! -f models/ggml-tiny.en.bin ]; then \ + wget --quiet --show-progress -O models/ggml-tiny.en.bin https://ggml.ggerganov.com/ggml-model-whisper-tiny.en.bin ; \ + fi + @echo "===============================================" + @echo "Running tiny.en on all samples in ./samples ..." + @echo "===============================================" + @echo "" + @for f in samples/*.wav; do \ + echo "----------------------------------------------" ; \ + echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \ + echo "----------------------------------------------" ; \ + echo "" ; \ + ./main -m models/ggml-tiny.en.bin -f $$f ; \ + echo "" ; \ + done + +.PHONY: base.en +base.en: main + @echo "Downloading base.en (142 MB just once)" + mkdir -p models + @if [ ! -f models/ggml-base.en.bin ]; then \ + wget --quiet --show-progress -O models/ggml-base.en.bin https://ggml.ggerganov.com/ggml-model-whisper-base.en.bin ; \ + fi + @echo "===============================================" + @echo "Running base.en on all samples in ./samples ..." + @echo "===============================================" + @echo "" + @for f in samples/*.wav; do \ + echo "----------------------------------------------" ; \ + echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \ + echo "----------------------------------------------" ; \ + echo "" ; \ + ./main -m models/ggml-base.en.bin -f $$f ; \ + echo "" ; \ + done + +.PHONY: small.en +small.en: main + @echo "Downloading small.en (466 MB just once)" + mkdir -p models + @if [ ! -f models/ggml-small.en.bin ]; then \ + wget --quiet --show-progress -O models/ggml-small.en.bin https://ggml.ggerganov.com/ggml-model-whisper-small.en.bin ; \ + fi + @echo "===============================================" + @echo "Running small.en on all samples in ./samples ..." + @echo "===============================================" + @echo "" + @for f in samples/*.wav; do \ + echo "----------------------------------------------" ; \ + echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \ + echo "----------------------------------------------" ; \ + echo "" ; \ + ./main -m models/ggml-small.en.bin -f $$f ; \ + echo "" ; \ + done + +.PHONY: medium.en +medium.en: main + @echo "Downloading medium.en (1.5 GB just once)" + mkdir -p models + @if [ ! -f models/ggml-medium.en.bin ]; then \ + wget --quiet --show-progress -O models/ggml-medium.en.bin https://ggml.ggerganov.com/ggml-model-whisper-medium.en.bin ; \ + fi + @echo "===============================================" + @echo "Running medium.en on all samples in ./samples ..." + @echo "===============================================" + @echo "" + @for f in samples/*.wav; do \ + echo "----------------------------------------------" ; \ + echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \ + echo "----------------------------------------------" ; \ + echo "" ; \ + ./main -m models/ggml-medium.en.bin -f $$f ; \ + echo "" ; \ + done diff --git a/convert-pt-to-ggml.py b/convert-pt-to-ggml.py new file mode 100644 index 00000000000..22bd12e5c84 --- /dev/null +++ b/convert-pt-to-ggml.py @@ -0,0 +1,328 @@ +# Convert Whisper transformer model from PyTorch to ggml format +# +# Usage: python convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium +# +# You need to clone the original repo in ~/path/to/repo/whisper/ +# +# git clone https://github.com/openai/whisper ~/path/to/repo/whisper/ +# +# It is used to various assets needed by the algorithm: +# +# - tokenizer +# - mel filters +# +# Also, you need to have the original models in ~/.cache/whisper/ +# See the original repo for more details. +# +# This script loads the specified model and whisper assets and saves them in ggml format. +# The output is a single binary file containing the following information: +# +# - hparams +# - mel filters +# - tokenizer vocab +# - model variables +# +# For each variable, write the following: +# +# - Number of dimensions (int) +# - Name length (int) +# - Dimensions (int[n_dims]) +# - Name (char[name_length]) +# - Data (float[n_dims]) +# + +import io +import os +import sys +import struct +import json +import code +import torch +import numpy as np + +from transformers import GPTJForCausalLM +from transformers import GPT2TokenizerFast + +# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110 +LANGUAGES = { + "en": "english", + "zh": "chinese", + "de": "german", + "es": "spanish", + "ru": "russian", + "ko": "korean", + "fr": "french", + "ja": "japanese", + "pt": "portuguese", + "tr": "turkish", + "pl": "polish", + "ca": "catalan", + "nl": "dutch", + "ar": "arabic", + "sv": "swedish", + "it": "italian", + "id": "indonesian", + "hi": "hindi", + "fi": "finnish", + "vi": "vietnamese", + "iw": "hebrew", + "uk": "ukrainian", + "el": "greek", + "ms": "malay", + "cs": "czech", + "ro": "romanian", + "da": "danish", + "hu": "hungarian", + "ta": "tamil", + "no": "norwegian", + "th": "thai", + "ur": "urdu", + "hr": "croatian", + "bg": "bulgarian", + "lt": "lithuanian", + "la": "latin", + "mi": "maori", + "ml": "malayalam", + "cy": "welsh", + "sk": "slovak", + "te": "telugu", + "fa": "persian", + "lv": "latvian", + "bn": "bengali", + "sr": "serbian", + "az": "azerbaijani", + "sl": "slovenian", + "kn": "kannada", + "et": "estonian", + "mk": "macedonian", + "br": "breton", + "eu": "basque", + "is": "icelandic", + "hy": "armenian", + "ne": "nepali", + "mn": "mongolian", + "bs": "bosnian", + "kk": "kazakh", + "sq": "albanian", + "sw": "swahili", + "gl": "galician", + "mr": "marathi", + "pa": "punjabi", + "si": "sinhala", + "km": "khmer", + "sn": "shona", + "yo": "yoruba", + "so": "somali", + "af": "afrikaans", + "oc": "occitan", + "ka": "georgian", + "be": "belarusian", + "tg": "tajik", + "sd": "sindhi", + "gu": "gujarati", + "am": "amharic", + "yi": "yiddish", + "lo": "lao", + "uz": "uzbek", + "fo": "faroese", + "ht": "haitian creole", + "ps": "pashto", + "tk": "turkmen", + "nn": "nynorsk", + "mt": "maltese", + "sa": "sanskrit", + "lb": "luxembourgish", + "my": "myanmar", + "bo": "tibetan", + "tl": "tagalog", + "mg": "malagasy", + "as": "assamese", + "tt": "tatar", + "haw": "hawaiian", + "ln": "lingala", + "ha": "hausa", + "ba": "bashkir", + "jw": "javanese", + "su": "sundanese", +} + +# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292 +def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"): + os.environ["TOKENIZERS_PARALLELISM"] = "false" + path = os.path.join(path_to_whisper_repo, "whisper/assets", name) + tokenizer = GPT2TokenizerFast.from_pretrained(path) + + specials = [ + "<|startoftranscript|>", + *[f"<|{lang}|>" for lang in LANGUAGES.keys()], + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nocaptions|>", + "<|notimestamps|>", + ] + + tokenizer.add_special_tokens(dict(additional_special_tokens=specials)) + return tokenizer + +# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +if len(sys.argv) < 4: + print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n") + sys.exit(1) + +fname_inp = sys.argv[1] +dir_whisper = sys.argv[2] +dir_out = sys.argv[3] + +# try to load PyTorch binary data +try: + model_bytes = open(fname_inp, "rb").read() + with io.BytesIO(model_bytes) as fp: + checkpoint = torch.load(fp, map_location="cpu") +except: + print("Error: failed to load PyTorch model file: %s" % fname_inp) + sys.exit(1) + +hparams = checkpoint["dims"] +print("hparams:", hparams) + +list_vars = checkpoint["model_state_dict"] + +#print(list_vars['encoder.positional_embedding']) +#print(list_vars['encoder.conv1.weight']) +#print(list_vars['encoder.conv1.weight'].shape) + +# load mel filters +n_mels = hparams["n_mels"] +with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f: + filters = torch.from_numpy(f[f"mel_{n_mels}"]) + #print (filters) + +#code.interact(local=locals()) + +multilingual = hparams["n_vocab"] == 51865 +tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2") + +#print(tokenizer) +#print(tokenizer.name_or_path) +#print(len(tokenizer.additional_special_tokens)) +dir_tokenizer = tokenizer.name_or_path + +# output in the same directory as the model +fname_out = dir_out + "/ggml-model.bin" + +with open(dir_tokenizer + "/vocab.json", "r") as f: + tokens = json.load(f) + +# use 16-bit or 32-bit floats +use_f16 = True +if len(sys.argv) > 4: + use_f16 = False + fname_out = dir_out + "/ggml-model-f32.bin" + +fout = open(fname_out, "wb") + +fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex +fout.write(struct.pack("i", hparams["n_vocab"])) +fout.write(struct.pack("i", hparams["n_audio_ctx"])) +fout.write(struct.pack("i", hparams["n_audio_state"])) +fout.write(struct.pack("i", hparams["n_audio_head"])) +fout.write(struct.pack("i", hparams["n_audio_layer"])) +fout.write(struct.pack("i", hparams["n_text_ctx"])) +fout.write(struct.pack("i", hparams["n_text_state"])) +fout.write(struct.pack("i", hparams["n_text_head"])) +fout.write(struct.pack("i", hparams["n_text_layer"])) +fout.write(struct.pack("i", hparams["n_mels"])) +fout.write(struct.pack("i", use_f16)) + +# write mel filters +fout.write(struct.pack("i", filters.shape[0])) +fout.write(struct.pack("i", filters.shape[1])) +for i in range(filters.shape[0]): + for j in range(filters.shape[1]): + fout.write(struct.pack("f", filters[i][j])) + +byte_encoder = bytes_to_unicode() +byte_decoder = {v:k for k, v in byte_encoder.items()} + +fout.write(struct.pack("i", len(tokens))) + +for key in tokens: + text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8') + fout.write(struct.pack("i", len(text))) + fout.write(text) + +for name in list_vars.keys(): + data = list_vars[name].squeeze().numpy() + print("Processing variable: " + name + " with shape: ", data.shape) + + # reshape conv bias from [n] to [n, 1] + if name == "encoder.conv1.bias" or \ + name == "encoder.conv2.bias": + data = data.reshape(data.shape[0], 1) + print(" Reshaped variable: " + name + " to shape: ", data.shape) + + n_dims = len(data.shape); + + # looks like the whisper models are in f16 by default + # so we need to convert the small tensors to f32 until we fully support f16 in ggml + # ftype == 0 -> float32, ftype == 1 -> float16 + ftype = 1; + if use_f16: + if n_dims < 2 or \ + name == "encoder.conv1.bias" or \ + name == "encoder.conv2.bias" or \ + name == "encoder.positional_embedding" or \ + name == "decoder.positional_embedding": + ftype = 0 + data = data.astype(np.float32) + print(" Converting to float32") + data = data.astype(np.float32) + ftype = 0 + else: + data = data.astype(np.float32) + ftype = 0 + + #if name.startswith("encoder"): + # if name.endswith("mlp.0.weight") or \ + # name.endswith("mlp.2.weight"): + # print(" Transposing") + # data = data.transpose() + + # header + str = name.encode('utf-8') + fout.write(struct.pack("iii", n_dims, len(str), ftype)) + for i in range(n_dims): + fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) + fout.write(str); + + # data + data.tofile(fout) + +fout.close() + +print("Done. Output file: " + fname_out) +print("") diff --git a/dr_wav.h b/dr_wav.h new file mode 100644 index 00000000000..fd3e95b34a0 --- /dev/null +++ b/dr_wav.h @@ -0,0 +1,6434 @@ +/* +WAV audio loader and writer. Choice of public domain or MIT-0. See license statements at the end of this file. +dr_wav - v0.12.16 - 2020-12-02 + +David Reid - mackron@gmail.com + +GitHub: https://github.com/mackron/dr_libs +*/ + +/* +RELEASE NOTES - VERSION 0.12 +============================ +Version 0.12 includes breaking changes to custom chunk handling. + + +Changes to Chunk Callback +------------------------- +dr_wav supports the ability to fire a callback when a chunk is encounted (except for WAVE and FMT chunks). The callback has been updated to include both the +container (RIFF or Wave64) and the FMT chunk which contains information about the format of the data in the wave file. + +Previously, there was no direct way to determine the container, and therefore no way to discriminate against the different IDs in the chunk header (RIFF and +Wave64 containers encode chunk ID's differently). The `container` parameter can be used to know which ID to use. + +Sometimes it can be useful to know the data format at the time the chunk callback is fired. A pointer to a `drwav_fmt` object is now passed into the chunk +callback which will give you information about the data format. To determine the sample format, use `drwav_fmt_get_format()`. This will return one of the +`DR_WAVE_FORMAT_*` tokens. +*/ + +/* +Introduction +============ +This is a single file library. To use it, do something like the following in one .c file. + + ```c + #define DR_WAV_IMPLEMENTATION + #include "dr_wav.h" + ``` + +You can then #include this file in other parts of the program as you would with any other header file. Do something like the following to read audio data: + + ```c + drwav wav; + if (!drwav_init_file(&wav, "my_song.wav", NULL)) { + // Error opening WAV file. + } + + drwav_int32* pDecodedInterleavedPCMFrames = malloc(wav.totalPCMFrameCount * wav.channels * sizeof(drwav_int32)); + size_t numberOfSamplesActuallyDecoded = drwav_read_pcm_frames_s32(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames); + + ... + + drwav_uninit(&wav); + ``` + +If you just want to quickly open and read the audio data in a single operation you can do something like this: + + ```c + unsigned int channels; + unsigned int sampleRate; + drwav_uint64 totalPCMFrameCount; + float* pSampleData = drwav_open_file_and_read_pcm_frames_f32("my_song.wav", &channels, &sampleRate, &totalPCMFrameCount, NULL); + if (pSampleData == NULL) { + // Error opening and reading WAV file. + } + + ... + + drwav_free(pSampleData); + ``` + +The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in this case), but you can still output the +audio data in its internal format (see notes below for supported formats): + + ```c + size_t framesRead = drwav_read_pcm_frames(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames); + ``` + +You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for a particular data format: + + ```c + size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer); + ``` + +dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at `drwav_init_write()`, +`drwav_init_file_write()`, etc. Use `drwav_write_pcm_frames()` to write samples, or `drwav_write_raw()` to write raw data in the "data" chunk. + + ```c + drwav_data_format format; + format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64. + format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes. + format.channels = 2; + format.sampleRate = 44100; + format.bitsPerSample = 16; + drwav_init_file_write(&wav, "data/recording.wav", &format, NULL); + + ... + + drwav_uint64 framesWritten = drwav_write_pcm_frames(pWav, frameCount, pSamples); + ``` + +dr_wav has seamless support the Sony Wave64 format. The decoder will automatically detect it and it should Just Work without any manual intervention. + + +Build Options +============= +#define these options before including this file. + +#define DR_WAV_NO_CONVERSION_API + Disables conversion APIs such as `drwav_read_pcm_frames_f32()` and `drwav_s16_to_f32()`. + +#define DR_WAV_NO_STDIO + Disables APIs that initialize a decoder from a file such as `drwav_init_file()`, `drwav_init_file_write()`, etc. + + + +Notes +===== +- Samples are always interleaved. +- The default read function does not do any data conversion. Use `drwav_read_pcm_frames_f32()`, `drwav_read_pcm_frames_s32()` and `drwav_read_pcm_frames_s16()` + to read and convert audio data to 32-bit floating point, signed 32-bit integer and signed 16-bit integer samples respectively. Tested and supported internal + formats include the following: + - Unsigned 8-bit PCM + - Signed 12-bit PCM + - Signed 16-bit PCM + - Signed 24-bit PCM + - Signed 32-bit PCM + - IEEE 32-bit floating point + - IEEE 64-bit floating point + - A-law and u-law + - Microsoft ADPCM + - IMA ADPCM (DVI, format code 0x11) +- dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format. +*/ + +#ifndef dr_wav_h +#define dr_wav_h + +#ifdef __cplusplus +extern "C" { +#endif + +#define DRWAV_STRINGIFY(x) #x +#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x) + +#define DRWAV_VERSION_MAJOR 0 +#define DRWAV_VERSION_MINOR 12 +#define DRWAV_VERSION_REVISION 16 +#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION) + +#include /* For size_t. */ + +/* Sized types. */ +typedef signed char drwav_int8; +typedef unsigned char drwav_uint8; +typedef signed short drwav_int16; +typedef unsigned short drwav_uint16; +typedef signed int drwav_int32; +typedef unsigned int drwav_uint32; +#if defined(_MSC_VER) + typedef signed __int64 drwav_int64; + typedef unsigned __int64 drwav_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif + #endif + typedef signed long long drwav_int64; + typedef unsigned long long drwav_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop + #endif +#endif +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + typedef drwav_uint64 drwav_uintptr; +#else + typedef drwav_uint32 drwav_uintptr; +#endif +typedef drwav_uint8 drwav_bool8; +typedef drwav_uint32 drwav_bool32; +#define DRWAV_TRUE 1 +#define DRWAV_FALSE 0 + +#if !defined(DRWAV_API) + #if defined(DRWAV_DLL) + #if defined(_WIN32) + #define DRWAV_DLL_IMPORT __declspec(dllimport) + #define DRWAV_DLL_EXPORT __declspec(dllexport) + #define DRWAV_DLL_PRIVATE static + #else + #if defined(__GNUC__) && __GNUC__ >= 4 + #define DRWAV_DLL_IMPORT __attribute__((visibility("default"))) + #define DRWAV_DLL_EXPORT __attribute__((visibility("default"))) + #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden"))) + #else + #define DRWAV_DLL_IMPORT + #define DRWAV_DLL_EXPORT + #define DRWAV_DLL_PRIVATE static + #endif + #endif + + #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION) + #define DRWAV_API DRWAV_DLL_EXPORT + #else + #define DRWAV_API DRWAV_DLL_IMPORT + #endif + #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE + #else + #define DRWAV_API extern + #define DRWAV_PRIVATE static + #endif +#endif + +typedef drwav_int32 drwav_result; +#define DRWAV_SUCCESS 0 +#define DRWAV_ERROR -1 /* A generic error. */ +#define DRWAV_INVALID_ARGS -2 +#define DRWAV_INVALID_OPERATION -3 +#define DRWAV_OUT_OF_MEMORY -4 +#define DRWAV_OUT_OF_RANGE -5 +#define DRWAV_ACCESS_DENIED -6 +#define DRWAV_DOES_NOT_EXIST -7 +#define DRWAV_ALREADY_EXISTS -8 +#define DRWAV_TOO_MANY_OPEN_FILES -9 +#define DRWAV_INVALID_FILE -10 +#define DRWAV_TOO_BIG -11 +#define DRWAV_PATH_TOO_LONG -12 +#define DRWAV_NAME_TOO_LONG -13 +#define DRWAV_NOT_DIRECTORY -14 +#define DRWAV_IS_DIRECTORY -15 +#define DRWAV_DIRECTORY_NOT_EMPTY -16 +#define DRWAV_END_OF_FILE -17 +#define DRWAV_NO_SPACE -18 +#define DRWAV_BUSY -19 +#define DRWAV_IO_ERROR -20 +#define DRWAV_INTERRUPT -21 +#define DRWAV_UNAVAILABLE -22 +#define DRWAV_ALREADY_IN_USE -23 +#define DRWAV_BAD_ADDRESS -24 +#define DRWAV_BAD_SEEK -25 +#define DRWAV_BAD_PIPE -26 +#define DRWAV_DEADLOCK -27 +#define DRWAV_TOO_MANY_LINKS -28 +#define DRWAV_NOT_IMPLEMENTED -29 +#define DRWAV_NO_MESSAGE -30 +#define DRWAV_BAD_MESSAGE -31 +#define DRWAV_NO_DATA_AVAILABLE -32 +#define DRWAV_INVALID_DATA -33 +#define DRWAV_TIMEOUT -34 +#define DRWAV_NO_NETWORK -35 +#define DRWAV_NOT_UNIQUE -36 +#define DRWAV_NOT_SOCKET -37 +#define DRWAV_NO_ADDRESS -38 +#define DRWAV_BAD_PROTOCOL -39 +#define DRWAV_PROTOCOL_UNAVAILABLE -40 +#define DRWAV_PROTOCOL_NOT_SUPPORTED -41 +#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42 +#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43 +#define DRWAV_SOCKET_NOT_SUPPORTED -44 +#define DRWAV_CONNECTION_RESET -45 +#define DRWAV_ALREADY_CONNECTED -46 +#define DRWAV_NOT_CONNECTED -47 +#define DRWAV_CONNECTION_REFUSED -48 +#define DRWAV_NO_HOST -49 +#define DRWAV_IN_PROGRESS -50 +#define DRWAV_CANCELLED -51 +#define DRWAV_MEMORY_ALREADY_MAPPED -52 +#define DRWAV_AT_END -53 + +/* Common data formats. */ +#define DR_WAVE_FORMAT_PCM 0x1 +#define DR_WAVE_FORMAT_ADPCM 0x2 +#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3 +#define DR_WAVE_FORMAT_ALAW 0x6 +#define DR_WAVE_FORMAT_MULAW 0x7 +#define DR_WAVE_FORMAT_DVI_ADPCM 0x11 +#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE + +/* Constants. */ +#ifndef DRWAV_MAX_SMPL_LOOPS +#define DRWAV_MAX_SMPL_LOOPS 1 +#endif + +/* Flags to pass into drwav_init_ex(), etc. */ +#define DRWAV_SEQUENTIAL 0x00000001 + +DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision); +DRWAV_API const char* drwav_version_string(void); + +typedef enum +{ + drwav_seek_origin_start, + drwav_seek_origin_current +} drwav_seek_origin; + +typedef enum +{ + drwav_container_riff, + drwav_container_w64, + drwav_container_rf64 +} drwav_container; + +typedef struct +{ + union + { + drwav_uint8 fourcc[4]; + drwav_uint8 guid[16]; + } id; + + /* The size in bytes of the chunk. */ + drwav_uint64 sizeInBytes; + + /* + RIFF = 2 byte alignment. + W64 = 8 byte alignment. + */ + unsigned int paddingSize; +} drwav_chunk_header; + +typedef struct +{ + /* + The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications + that require support for data formats not natively supported by dr_wav. + */ + drwav_uint16 formatTag; + + /* The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc. */ + drwav_uint16 channels; + + /* The sample rate. Usually set to something like 44100. */ + drwav_uint32 sampleRate; + + /* Average bytes per second. You probably don't need this, but it's left here for informational purposes. */ + drwav_uint32 avgBytesPerSec; + + /* Block align. This is equal to the number of channels * bytes per sample. */ + drwav_uint16 blockAlign; + + /* Bits per sample. */ + drwav_uint16 bitsPerSample; + + /* The size of the extended data. Only used internally for validation, but left here for informational purposes. */ + drwav_uint16 extendedSize; + + /* + The number of valid bits per sample. When is equal to WAVE_FORMAT_EXTENSIBLE, + is always rounded up to the nearest multiple of 8. This variable contains information about exactly how + many bits are valid per sample. Mainly used for informational purposes. + */ + drwav_uint16 validBitsPerSample; + + /* The channel mask. Not used at the moment. */ + drwav_uint32 channelMask; + + /* The sub-format, exactly as specified by the wave file. */ + drwav_uint8 subFormat[16]; +} drwav_fmt; + +DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT); + + +/* +Callback for when data is read. Return value is the number of bytes actually read. + +pUserData [in] The user data that was passed to drwav_init() and family. +pBufferOut [out] The output buffer. +bytesToRead [in] The number of bytes to read. + +Returns the number of bytes actually read. + +A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until +either the entire bytesToRead is filled or you have reached the end of the stream. +*/ +typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +/* +Callback for when data is written. Returns value is the number of bytes actually written. + +pUserData [in] The user data that was passed to drwav_init_write() and family. +pData [out] A pointer to the data to write. +bytesToWrite [in] The number of bytes to write. + +Returns the number of bytes actually written. + +If the return value differs from bytesToWrite, it indicates an error. +*/ +typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite); + +/* +Callback for when data needs to be seeked. + +pUserData [in] The user data that was passed to drwav_init() and family. +offset [in] The number of bytes to move, relative to the origin. Will never be negative. +origin [in] The origin of the seek - the current position or the start of the stream. + +Returns whether or not the seek was successful. + +Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be either drwav_seek_origin_start or +drwav_seek_origin_current. +*/ +typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin); + +/* +Callback for when drwav_init_ex() finds a chunk. + +pChunkUserData [in] The user data that was passed to the pChunkUserData parameter of drwav_init_ex() and family. +onRead [in] A pointer to the function to call when reading. +onSeek [in] A pointer to the function to call when seeking. +pReadSeekUserData [in] The user data that was passed to the pReadSeekUserData parameter of drwav_init_ex() and family. +pChunkHeader [in] A pointer to an object containing basic header information about the chunk. Use this to identify the chunk. +container [in] Whether or not the WAV file is a RIFF or Wave64 container. If you're unsure of the difference, assume RIFF. +pFMT [in] A pointer to the object containing the contents of the "fmt" chunk. + +Returns the number of bytes read + seeked. + +To read data from the chunk, call onRead(), passing in pReadSeekUserData as the first parameter. Do the same for seeking with onSeek(). The return value must +be the total number of bytes you have read _plus_ seeked. + +Use the `container` argument to discriminate the fields in `pChunkHeader->id`. If the container is `drwav_container_riff` or `drwav_container_rf64` you should +use `id.fourcc`, otherwise you should use `id.guid`. + +The `pFMT` parameter can be used to determine the data format of the wave file. Use `drwav_fmt_get_format()` to get the sample format, which will be one of the +`DR_WAVE_FORMAT_*` identifiers. + +The read pointer will be sitting on the first byte after the chunk's header. You must not attempt to read beyond the boundary of the chunk. +*/ +typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT); + +typedef struct +{ + void* pUserData; + void* (* onMalloc)(size_t sz, void* pUserData); + void* (* onRealloc)(void* p, size_t sz, void* pUserData); + void (* onFree)(void* p, void* pUserData); +} drwav_allocation_callbacks; + +/* Structure for internal use. Only used for loaders opened with drwav_init_memory(). */ +typedef struct +{ + const drwav_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drwav__memory_stream; + +/* Structure for internal use. Only used for writers opened with drwav_init_memory_write(). */ +typedef struct +{ + void** ppData; + size_t* pDataSize; + size_t dataSize; + size_t dataCapacity; + size_t currentWritePos; +} drwav__memory_stream_write; + +typedef struct +{ + drwav_container container; /* RIFF, W64. */ + drwav_uint32 format; /* DR_WAVE_FORMAT_* */ + drwav_uint32 channels; + drwav_uint32 sampleRate; + drwav_uint32 bitsPerSample; +} drwav_data_format; + + +/* See the following for details on the 'smpl' chunk: https://sites.google.com/site/musicgapi/technical-documents/wav-file-format#smpl */ +typedef struct +{ + drwav_uint32 cuePointId; + drwav_uint32 type; + drwav_uint32 start; + drwav_uint32 end; + drwav_uint32 fraction; + drwav_uint32 playCount; +} drwav_smpl_loop; + + typedef struct +{ + drwav_uint32 manufacturer; + drwav_uint32 product; + drwav_uint32 samplePeriod; + drwav_uint32 midiUnityNotes; + drwav_uint32 midiPitchFraction; + drwav_uint32 smpteFormat; + drwav_uint32 smpteOffset; + drwav_uint32 numSampleLoops; + drwav_uint32 samplerData; + drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS]; +} drwav_smpl; + +typedef struct +{ + /* A pointer to the function to call when more data is needed. */ + drwav_read_proc onRead; + + /* A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode. */ + drwav_write_proc onWrite; + + /* A pointer to the function to call when the wav file needs to be seeked. */ + drwav_seek_proc onSeek; + + /* The user data to pass to callbacks. */ + void* pUserData; + + /* Allocation callbacks. */ + drwav_allocation_callbacks allocationCallbacks; + + + /* Whether or not the WAV file is formatted as a standard RIFF file or W64. */ + drwav_container container; + + + /* Structure containing format information exactly as specified by the wav file. */ + drwav_fmt fmt; + + /* The sample rate. Will be set to something like 44100. */ + drwav_uint32 sampleRate; + + /* The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. */ + drwav_uint16 channels; + + /* The bits per sample. Will be set to something like 16, 24, etc. */ + drwav_uint16 bitsPerSample; + + /* Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE). */ + drwav_uint16 translatedFormatTag; + + /* The total number of PCM frames making up the audio data. */ + drwav_uint64 totalPCMFrameCount; + + + /* The size in bytes of the data chunk. */ + drwav_uint64 dataChunkDataSize; + + /* The position in the stream of the first byte of the data chunk. This is used for seeking. */ + drwav_uint64 dataChunkDataPos; + + /* The number of bytes remaining in the data chunk. */ + drwav_uint64 bytesRemaining; + + + /* + Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always + set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation. + */ + drwav_uint64 dataChunkDataSizeTargetWrite; + + /* Keeps track of whether or not the wav writer was initialized in sequential mode. */ + drwav_bool32 isSequentialWrite; + + + /* smpl chunk. */ + drwav_smpl smpl; + + + /* A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_init_memory(). */ + drwav__memory_stream memoryStream; + drwav__memory_stream_write memoryStreamWrite; + + /* Generic data for compressed formats. This data is shared across all block-compressed formats. */ + struct + { + drwav_uint64 iCurrentPCMFrame; /* The index of the next PCM frame that will be read by drwav_read_*(). This is used with "totalPCMFrameCount" to ensure we don't read excess samples at the end of the last block. */ + } compressed; + + /* Microsoft ADPCM specific data. */ + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_uint16 predictor[2]; + drwav_int32 delta[2]; + drwav_int32 cachedFrames[4]; /* Samples are stored in this cache during decoding. */ + drwav_uint32 cachedFrameCount; + drwav_int32 prevFrames[2][2]; /* The previous 2 samples for each channel (2 channels at most). */ + } msadpcm; + + /* IMA ADPCM specific data. */ + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_int32 predictor[2]; + drwav_int32 stepIndex[2]; + drwav_int32 cachedFrames[16]; /* Samples are stored in this cache during decoding. */ + drwav_uint32 cachedFrameCount; + } ima; +} drwav; + + +/* +Initializes a pre-allocated drwav object for reading. + +pWav [out] A pointer to the drwav object being initialized. +onRead [in] The function to call when data needs to be read from the client. +onSeek [in] The function to call when the read position of the client data needs to move. +onChunk [in, optional] The function to call when a chunk is enumerated at initialized time. +pUserData, pReadSeekUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +pChunkUserData [in, optional] A pointer to application defined data that will be passed to onChunk. +flags [in, optional] A set of flags for controlling how things are loaded. + +Returns true if successful; false otherwise. + +Close the loader with drwav_uninit(). + +This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory() +to open the stream from a file or from a block of memory respectively. + +Possible values for flags: + DRWAV_SEQUENTIAL: Never perform a backwards seek while loading. This disables the chunk callback and will cause this function + to return as soon as the data chunk is found. Any chunks after the data chunk will be ignored. + +drwav_init() is equivalent to "drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0);". + +The onChunk callback is not called for the WAVE or FMT chunks. The contents of the FMT chunk can be read from pWav->fmt +after the function returns. + +See also: drwav_init_file(), drwav_init_memory(), drwav_uninit() +*/ +DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); + +/* +Initializes a pre-allocated drwav object for writing. + +onWrite [in] The function to call when data needs to be written. +onSeek [in] The function to call when the write position needs to move. +pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek. + +Returns true if successful; false otherwise. + +Close the writer with drwav_uninit(). + +This is the lowest level function for initializing a WAV file. You can also use drwav_init_file_write() and drwav_init_memory_write() +to open the stream from a file or from a block of memory respectively. + +If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform +a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek. + +See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit() +*/ +DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); + +/* +Utility function to determine the target size of the entire data to be written (including all headers and chunks). + +Returns the target size in bytes. + +Useful if the application needs to know the size to allocate. + +Only writing to the RIFF chunk and one data chunk is currently supported. + +See also: drwav_init_write(), drwav_init_file_write(), drwav_init_memory_write() +*/ +DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + +/* +Uninitializes the given drwav object. + +Use this only for objects initialized with drwav_init*() functions (drwav_init(), drwav_init_ex(), drwav_init_write(), drwav_init_write_sequential()). +*/ +DRWAV_API drwav_result drwav_uninit(drwav* pWav); + + +/* +Reads raw audio data. + +This is the lowest level function for reading audio data. It simply reads the given number of +bytes of the raw internal sample data. + +Consider using drwav_read_pcm_frames_s16(), drwav_read_pcm_frames_s32() or drwav_read_pcm_frames_f32() for +reading sample data in a consistent format. + +pBufferOut can be NULL in which case a seek will be performed. + +Returns the number of bytes actually read. +*/ +DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut); + +/* +Reads up to the specified number of PCM frames from the WAV file. + +The output data will be in the file's internal format, converted to native-endian byte order. Use +drwav_read_pcm_frames_s16/f32/s32() to read data in a specific format. + +If the return value is less than it means the end of the file has been reached or +you have requested more PCM frames than can possibly fit in the output buffer. + +This function will only work when sample data is of a fixed size and uncompressed. If you are +using a compressed format consider using drwav_read_raw() or drwav_read_pcm_frames_s16/s32/f32(). + +pBufferOut can be NULL in which case a seek will be performed. +*/ +DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); + +/* +Seeks to the given PCM frame. + +Returns true if successful; false otherwise. +*/ +DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex); + + +/* +Writes raw audio data. + +Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error. +*/ +DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData); + +/* +Writes PCM frames. + +Returns the number of PCM frames written. + +Input samples need to be in native-endian byte order. On big-endian architectures the input data will be converted to +little-endian. Use drwav_write_raw() to write raw audio data without performing any conversion. +*/ +DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); +DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); +DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); + + +/* Conversion Utilities */ +#ifndef DR_WAV_NO_CONVERSION_API + +/* +Reads a chunk of audio data and converts it to signed 16-bit PCM samples. + +pBufferOut can be NULL in which case a seek will be performed. + +Returns the number of PCM frames actually read. + +If the return value is less than it means the end of the file has been reached. +*/ +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); + +/* Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount); + +/* Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount); + +/* Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount); + +/* Low-level function for converting A-law samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting u-law samples to signed 16-bit PCM samples. */ +DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + + +/* +Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples. + +pBufferOut can be NULL in which case a seek will be performed. + +Returns the number of PCM frames actually read. + +If the return value is less than it means the end of the file has been reached. +*/ +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); + +/* Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount); + +/* Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount); + +/* Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount); + +/* Low-level function for converting A-law samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting u-law samples to IEEE 32-bit floating point samples. */ +DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + + +/* +Reads a chunk of audio data and converts it to signed 32-bit PCM samples. + +pBufferOut can be NULL in which case a seek will be performed. + +Returns the number of PCM frames actually read. + +If the return value is less than it means the end of the file has been reached. +*/ +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); + +/* Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount); + +/* Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount); + +/* Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount); + +/* Low-level function for converting A-law samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +/* Low-level function for converting u-law samples to signed 32-bit PCM samples. */ +DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +#endif /* DR_WAV_NO_CONVERSION_API */ + + +/* High-Level Convenience Helpers */ + +#ifndef DR_WAV_NO_STDIO +/* +Helper for initializing a wave file for reading using stdio. + +This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav +objects because the operating system may restrict the number of file handles an application can have open at +any given time. +*/ +DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); + +/* +Helper for initializing a wave file for writing using stdio. + +This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav +objects because the operating system may restrict the number of file handles an application can have open at +any given time. +*/ +DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif /* DR_WAV_NO_STDIO */ + +/* +Helper for initializing a loader from a pre-allocated memory buffer. + +This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +the lifetime of the drwav object. + +The buffer should contain the contents of the entire wave file, not just the sample data. +*/ +DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); + +/* +Helper for initializing a writer which outputs data to a memory buffer. + +dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free(). + +The buffer will remain allocated even after drwav_uninit() is called. The buffer should not be considered valid +until after drwav_uninit() has been called. +*/ +DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); + + +#ifndef DR_WAV_NO_CONVERSION_API +/* +Opens and reads an entire wav file in a single operation. + +The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer. +*/ +DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#ifndef DR_WAV_NO_STDIO +/* +Opens and decodes an entire wav file in a single operation. + +The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer. +*/ +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif +/* +Opens and decodes an entire wav file from a block of memory in a single operation. + +The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer. +*/ +DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); +#endif + +/* Frees data that was allocated internally by dr_wav. */ +DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks); + +/* Converts bytes from a wav stream to a sized type of native endian. */ +DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data); +DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data); +DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data); +DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data); +DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data); +DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data); + +/* Compares a GUID for the purpose of checking the type of a Wave64 chunk. */ +DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]); + +/* Compares a four-character-code for the purpose of checking the type of a RIFF chunk. */ +DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b); + +#ifdef __cplusplus +} +#endif +#endif /* dr_wav_h */ + + +/************************************************************************************************************************************************************ + ************************************************************************************************************************************************************ + + IMPLEMENTATION + + ************************************************************************************************************************************************************ + ************************************************************************************************************************************************************/ +#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION) +#ifndef dr_wav_c +#define dr_wav_c + +#include +#include /* For memcpy(), memset() */ +#include /* For INT_MAX */ + +#ifndef DR_WAV_NO_STDIO +#include +#include +#endif + +/* Standard library stuff. */ +#ifndef DRWAV_ASSERT +#include +#define DRWAV_ASSERT(expression) assert(expression) +#endif +#ifndef DRWAV_MALLOC +#define DRWAV_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRWAV_REALLOC +#define DRWAV_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRWAV_FREE +#define DRWAV_FREE(p) free((p)) +#endif +#ifndef DRWAV_COPY_MEMORY +#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRWAV_ZERO_MEMORY +#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif +#ifndef DRWAV_ZERO_OBJECT +#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p)) +#endif + +#define drwav_countof(x) (sizeof(x) / sizeof(x[0])) +#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drwav_min(a, b) (((a) < (b)) ? (a) : (b)) +#define drwav_max(a, b) (((a) > (b)) ? (a) : (b)) +#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x)))) + +#define DRWAV_MAX_SIMD_VECTOR_SIZE 64 /* 64 for AVX-512 in the future. */ + +/* CPU architecture. */ +#if defined(__x86_64__) || defined(_M_X64) + #define DRWAV_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRWAV_X86 +#elif defined(__arm__) || defined(_M_ARM) + #define DRWAV_ARM +#endif + +#ifdef _MSC_VER + #define DRWAV_INLINE __forceinline +#elif defined(__GNUC__) + /* + I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when + the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some + case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the + command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue + I am using "__inline__" only when we're compiling in strict ANSI mode. + */ + #if defined(__STRICT_ANSI__) + #define DRWAV_INLINE __inline__ __attribute__((always_inline)) + #else + #define DRWAV_INLINE inline __attribute__((always_inline)) + #endif +#elif defined(__WATCOMC__) + #define DRWAV_INLINE __inline +#else + #define DRWAV_INLINE +#endif + +#if defined(SIZE_MAX) + #define DRWAV_SIZE_MAX SIZE_MAX +#else + #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) + #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRWAV_SIZE_MAX 0xFFFFFFFF + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1400 + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #define DRWAV_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_bswap16) + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRWAV_HAS_BYTESWAP64_INTRINSIC + #endif + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRWAV_HAS_BYTESWAP32_INTRINSIC + #define DRWAV_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRWAV_HAS_BYTESWAP16_INTRINSIC + #endif +#endif + +DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision) +{ + if (pMajor) { + *pMajor = DRWAV_VERSION_MAJOR; + } + + if (pMinor) { + *pMinor = DRWAV_VERSION_MINOR; + } + + if (pRevision) { + *pRevision = DRWAV_VERSION_REVISION; + } +} + +DRWAV_API const char* drwav_version_string(void) +{ + return DRWAV_VERSION_STRING; +} + +/* +These limits are used for basic validation when initializing the decoder. If you exceed these limits, first of all: what on Earth are +you doing?! (Let me know, I'd be curious!) Second, you can adjust these by #define-ing them before the dr_wav implementation. +*/ +#ifndef DRWAV_MAX_SAMPLE_RATE +#define DRWAV_MAX_SAMPLE_RATE 384000 +#endif +#ifndef DRWAV_MAX_CHANNELS +#define DRWAV_MAX_CHANNELS 256 +#endif +#ifndef DRWAV_MAX_BITS_PER_SAMPLE +#define DRWAV_MAX_BITS_PER_SAMPLE 64 +#endif + +static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; /* 66666972-912E-11CF-A5D6-28DB04C10000 */ +static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 65766177-ACF3-11D3-8CD1-00C04F8EDB8A */ +/*static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};*/ /* 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A */ +static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A */ +static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 74636166-ACF3-11D3-8CD1-00C04F8EDB8A */ +static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 61746164-ACF3-11D3-8CD1-00C04F8EDB8A */ +static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 6C706D73-ACF3-11D3-8CD1-00C04F8EDB8A */ + +static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) +{ + int i; + for (i = 0; i < 16; i += 1) { + if (a[i] != b[i]) { + return DRWAV_FALSE; + } + } + + return DRWAV_TRUE; +} + +static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b) +{ + return + a[0] == b[0] && + a[1] == b[1] && + a[2] == b[2] && + a[3] == b[3]; +} + + + +static DRWAV_INLINE int drwav__is_little_endian(void) +{ +#if defined(DRWAV_X86) || defined(DRWAV_X64) + return DRWAV_TRUE; +#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN + return DRWAV_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} + +static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data) +{ + return (data[0] << 0) | (data[1] << 8); +} + +static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data) +{ + return (short)drwav__bytes_to_u16(data); +} + +static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data) +{ + return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24); +} + +static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data) +{ + return (drwav_int32)drwav__bytes_to_u32(data); +} + +static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data) +{ + return + ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) | + ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56); +} + +static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data) +{ + return (drwav_int64)drwav__bytes_to_u64(data); +} + +static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid) +{ + int i; + for (i = 0; i < 16; ++i) { + guid[i] = data[i]; + } +} + + +static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n) +{ +#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n) +{ +#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */ + /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */ + drwav_uint32 r; + __asm__ __volatile__ ( + #if defined(DRWAV_64BIT) + "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */ + #else + "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) + #endif + ); + return r; + #else + return __builtin_bswap32(n); + #endif + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n) +{ +#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */ + return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) | + ((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) | + ((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) | + ((n & ((drwav_uint64)0x000000FF << 32)) >> 8) | + ((n & ((drwav_uint64)0xFF000000 )) << 8) | + ((n & ((drwav_uint64)0x00FF0000 )) << 24) | + ((n & ((drwav_uint64)0x0000FF00 )) << 40) | + ((n & ((drwav_uint64)0x000000FF )) << 56); +#endif +} + + +static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n) +{ + return (drwav_int16)drwav__bswap16((drwav_uint16)n); +} + +static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]); + } +} + + +static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p) +{ + drwav_uint8 t; + t = p[0]; + p[0] = p[2]; + p[2] = t; +} + +static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + drwav_uint8* pSample = pSamples + (iSample*3); + drwav__bswap_s24(pSample); + } +} + + +static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n) +{ + return (drwav_int32)drwav__bswap32((drwav_uint32)n); +} + +static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]); + } +} + + +static DRWAV_INLINE float drwav__bswap_f32(float n) +{ + union { + drwav_uint32 i; + float f; + } x; + x.f = n; + x.i = drwav__bswap32(x.i); + + return x.f; +} + +static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]); + } +} + + +static DRWAV_INLINE double drwav__bswap_f64(double n) +{ + union { + drwav_uint64 i; + double f; + } x; + x.f = n; + x.i = drwav__bswap64(x.i); + + return x.f; +} + +static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount) +{ + drwav_uint64 iSample; + for (iSample = 0; iSample < sampleCount; iSample += 1) { + pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]); + } +} + + +static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) +{ + /* Assumes integer PCM. Floating point PCM is done in drwav__bswap_samples_ieee(). */ + switch (bytesPerSample) + { + case 2: /* s16, s12 (loosely packed) */ + { + drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); + } break; + case 3: /* s24 */ + { + drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount); + } break; + case 4: /* s32 */ + { + drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount); + } break; + default: + { + /* Unsupported format. */ + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} + +static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) +{ + switch (bytesPerSample) + { + #if 0 /* Contributions welcome for f16 support. */ + case 2: /* f16 */ + { + drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount); + } break; + #endif + case 4: /* f32 */ + { + drwav__bswap_samples_f32((float*)pSamples, sampleCount); + } break; + case 8: /* f64 */ + { + drwav__bswap_samples_f64((double*)pSamples, sampleCount); + } break; + default: + { + /* Unsupported format. */ + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} + +static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format) +{ + switch (format) + { + case DR_WAVE_FORMAT_PCM: + { + drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample); + } break; + + case DR_WAVE_FORMAT_IEEE_FLOAT: + { + drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample); + } break; + + case DR_WAVE_FORMAT_ALAW: + case DR_WAVE_FORMAT_MULAW: + { + drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); + } break; + + case DR_WAVE_FORMAT_ADPCM: + case DR_WAVE_FORMAT_DVI_ADPCM: + default: + { + /* Unsupported format. */ + DRWAV_ASSERT(DRWAV_FALSE); + } break; + } +} + + +static void* drwav__malloc_default(size_t sz, void* pUserData) +{ + (void)pUserData; + return DRWAV_MALLOC(sz); +} + +static void* drwav__realloc_default(void* p, size_t sz, void* pUserData) +{ + (void)pUserData; + return DRWAV_REALLOC(p, sz); +} + +static void drwav__free_default(void* p, void* pUserData) +{ + (void)pUserData; + DRWAV_FREE(p); +} + + +static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + + if (pAllocationCallbacks->onMalloc != NULL) { + return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); + } + + /* Try using realloc(). */ + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); + } + + return NULL; +} + +static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); + } + + /* Try emulating realloc() in terms of malloc()/free(). */ + if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { + void* p2; + + p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); + if (p2 == NULL) { + return NULL; + } + + if (p != NULL) { + DRWAV_COPY_MEMORY(p2, p, szOld); + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } + + return p2; + } + + return NULL; +} + +static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (p == NULL || pAllocationCallbacks == NULL) { + return; + } + + if (pAllocationCallbacks->onFree != NULL) { + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } +} + + +static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + /* Copy. */ + return *pAllocationCallbacks; + } else { + /* Defaults. */ + drwav_allocation_callbacks allocationCallbacks; + allocationCallbacks.pUserData = NULL; + allocationCallbacks.onMalloc = drwav__malloc_default; + allocationCallbacks.onRealloc = drwav__realloc_default; + allocationCallbacks.onFree = drwav__free_default; + return allocationCallbacks; + } +} + + +static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag) +{ + return + formatTag == DR_WAVE_FORMAT_ADPCM || + formatTag == DR_WAVE_FORMAT_DVI_ADPCM; +} + +static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize) +{ + return (unsigned int)(chunkSize % 2); +} + +static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize) +{ + return (unsigned int)(chunkSize % 8); +} + +static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + +static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut) +{ + if (container == drwav_container_riff || container == drwav_container_rf64) { + drwav_uint8 sizeInBytes[4]; + + if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) { + return DRWAV_AT_END; + } + + if (onRead(pUserData, sizeInBytes, 4) != 4) { + return DRWAV_INVALID_FILE; + } + + pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes); + pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes); + *pRunningBytesReadOut += 8; + } else { + drwav_uint8 sizeInBytes[8]; + + if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) { + return DRWAV_AT_END; + } + + if (onRead(pUserData, sizeInBytes, 8) != 8) { + return DRWAV_INVALID_FILE; + } + + pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24; /* <-- Subtract 24 because w64 includes the size of the header. */ + pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes); + *pRunningBytesReadOut += 24; + } + + return DRWAV_SUCCESS; +} + +static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) +{ + drwav_uint64 bytesRemainingToSeek = offset; + while (bytesRemainingToSeek > 0) { + if (bytesRemainingToSeek > 0x7FFFFFFF) { + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek -= 0x7FFFFFFF; + } else { + if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek = 0; + } + } + + return DRWAV_TRUE; +} + +static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) +{ + if (offset <= 0x7FFFFFFF) { + return onSeek(pUserData, (int)offset, drwav_seek_origin_start); + } + + /* Larger than 32-bit seek. */ + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) { + return DRWAV_FALSE; + } + offset -= 0x7FFFFFFF; + + for (;;) { + if (offset <= 0x7FFFFFFF) { + return onSeek(pUserData, (int)offset, drwav_seek_origin_current); + } + + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + offset -= 0x7FFFFFFF; + } + + /* Should never get here. */ + /*return DRWAV_TRUE; */ +} + + +static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut) +{ + drwav_chunk_header header; + drwav_uint8 fmt[16]; + + if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + + /* Skip non-fmt chunks. */ + while (((container == drwav_container_riff || container == drwav_container_rf64) && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) { + if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize; + + /* Try the next header. */ + if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + } + + + /* Validation. */ + if (container == drwav_container_riff || container == drwav_container_rf64) { + if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) { + return DRWAV_FALSE; + } + } else { + if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) { + return DRWAV_FALSE; + } + } + + + if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += sizeof(fmt); + + fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0); + fmtOut->channels = drwav__bytes_to_u16(fmt + 2); + fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4); + fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8); + fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12); + fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14); + + fmtOut->extendedSize = 0; + fmtOut->validBitsPerSample = 0; + fmtOut->channelMask = 0; + memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat)); + + if (header.sizeInBytes > 16) { + drwav_uint8 fmt_cbSize[2]; + int bytesReadSoFar = 0; + + if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) { + return DRWAV_FALSE; /* Expecting more data. */ + } + *pRunningBytesReadOut += sizeof(fmt_cbSize); + + bytesReadSoFar = 18; + + fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize); + if (fmtOut->extendedSize > 0) { + /* Simple validation. */ + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + if (fmtOut->extendedSize != 22) { + return DRWAV_FALSE; + } + } + + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + drwav_uint8 fmtext[22]; + if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) { + return DRWAV_FALSE; /* Expecting more data. */ + } + + fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0); + fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2); + drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat); + } else { + if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + } + *pRunningBytesReadOut += fmtOut->extendedSize; + + bytesReadSoFar += fmtOut->extendedSize; + } + + /* Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size. */ + if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar); + } + + if (header.paddingSize > 0) { + if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.paddingSize; + } + + return DRWAV_TRUE; +} + + +static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor) +{ + size_t bytesRead; + + DRWAV_ASSERT(onRead != NULL); + DRWAV_ASSERT(pCursor != NULL); + + bytesRead = onRead(pUserData, pBufferOut, bytesToRead); + *pCursor += bytesRead; + return bytesRead; +} + +#if 0 +static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor) +{ + DRWAV_ASSERT(onSeek != NULL); + DRWAV_ASSERT(pCursor != NULL); + + if (!onSeek(pUserData, offset, origin)) { + return DRWAV_FALSE; + } + + if (origin == drwav_seek_origin_start) { + *pCursor = offset; + } else { + *pCursor += offset; + } + + return DRWAV_TRUE; +} +#endif + + + +static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav) +{ + /* + The bytes per frame is a bit ambiguous. It can be either be based on the bits per sample, or the block align. The way I'm doing it here + is that if the bits per sample is a multiple of 8, use floor(bitsPerSample*channels/8), otherwise fall back to the block align. + */ + if ((pWav->bitsPerSample & 0x7) == 0) { + /* Bits per sample is a multiple of 8. */ + return (pWav->bitsPerSample * pWav->fmt.channels) >> 3; + } else { + return pWav->fmt.blockAlign; + } +} + +DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT) +{ + if (pFMT == NULL) { + return 0; + } + + if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) { + return pFMT->formatTag; + } else { + return drwav__bytes_to_u16(pFMT->subFormat); /* Only the first two bytes are required. */ + } +} + +static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pWav == NULL || onRead == NULL || onSeek == NULL) { + return DRWAV_FALSE; + } + + DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); + pWav->onRead = onRead; + pWav->onSeek = onSeek; + pWav->pUserData = pReadSeekUserData; + pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); + + if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { + return DRWAV_FALSE; /* Invalid allocation callbacks. */ + } + + return DRWAV_TRUE; +} + +static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags) +{ + /* This function assumes drwav_preinit() has been called beforehand. */ + + drwav_uint64 cursor; /* <-- Keeps track of the byte position so we can seek to specific locations. */ + drwav_bool32 sequential; + drwav_uint8 riff[4]; + drwav_fmt fmt; + unsigned short translatedFormatTag; + drwav_bool32 foundDataChunk; + drwav_uint64 dataChunkSize = 0; /* <-- Important! Don't explicitly set this to 0 anywhere else. Calculation of the size of the data chunk is performed in different paths depending on the container. */ + drwav_uint64 sampleCountFromFactChunk = 0; /* Same as dataChunkSize - make sure this is the only place this is initialized to 0. */ + drwav_uint64 chunkSize; + + cursor = 0; + sequential = (flags & DRWAV_SEQUENTIAL) != 0; + + /* The first 4 bytes should be the RIFF identifier. */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) { + return DRWAV_FALSE; + } + + /* + The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for + w64 it will start with "riff". + */ + if (drwav__fourcc_equal(riff, "RIFF")) { + pWav->container = drwav_container_riff; + } else if (drwav__fourcc_equal(riff, "riff")) { + int i; + drwav_uint8 riff2[12]; + + pWav->container = drwav_container_w64; + + /* Check the rest of the GUID for validity. */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) { + return DRWAV_FALSE; + } + + for (i = 0; i < 12; ++i) { + if (riff2[i] != drwavGUID_W64_RIFF[i+4]) { + return DRWAV_FALSE; + } + } + } else if (drwav__fourcc_equal(riff, "RF64")) { + pWav->container = drwav_container_rf64; + } else { + return DRWAV_FALSE; /* Unknown or unsupported container. */ + } + + + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + drwav_uint8 chunkSizeBytes[4]; + drwav_uint8 wave[4]; + + /* RIFF/WAVE */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { + return DRWAV_FALSE; + } + + if (pWav->container == drwav_container_riff) { + if (drwav__bytes_to_u32(chunkSizeBytes) < 36) { + return DRWAV_FALSE; /* Chunk size should always be at least 36 bytes. */ + } + } else { + if (drwav__bytes_to_u32(chunkSizeBytes) != 0xFFFFFFFF) { + return DRWAV_FALSE; /* Chunk size should always be set to -1/0xFFFFFFFF for RF64. The actual size is retrieved later. */ + } + } + + if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { + return DRWAV_FALSE; + } + + if (!drwav__fourcc_equal(wave, "WAVE")) { + return DRWAV_FALSE; /* Expecting "WAVE". */ + } + } else { + drwav_uint8 chunkSizeBytes[8]; + drwav_uint8 wave[16]; + + /* W64 */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { + return DRWAV_FALSE; + } + + if (drwav__bytes_to_u64(chunkSizeBytes) < 80) { + return DRWAV_FALSE; + } + + if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { + return DRWAV_FALSE; + } + + if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) { + return DRWAV_FALSE; + } + } + + + /* For RF64, the "ds64" chunk must come next, before the "fmt " chunk. */ + if (pWav->container == drwav_container_rf64) { + drwav_uint8 sizeBytes[8]; + drwav_uint64 bytesRemainingInChunk; + drwav_chunk_header header; + drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); + if (result != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + if (!drwav__fourcc_equal(header.id.fourcc, "ds64")) { + return DRWAV_FALSE; /* Expecting "ds64". */ + } + + bytesRemainingInChunk = header.sizeInBytes + header.paddingSize; + + /* We don't care about the size of the RIFF chunk - skip it. */ + if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + cursor += 8; + + + /* Next 8 bytes is the size of the "data" chunk. */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + dataChunkSize = drwav__bytes_to_u64(sizeBytes); + + + /* Next 8 bytes is the same count which we would usually derived from the FACT chunk if it was available. */ + if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { + return DRWAV_FALSE; + } + bytesRemainingInChunk -= 8; + sampleCountFromFactChunk = drwav__bytes_to_u64(sizeBytes); + + + /* Skip over everything else. */ + if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) { + return DRWAV_FALSE; + } + cursor += bytesRemainingInChunk; + } + + + /* The next bytes should be the "fmt " chunk. */ + if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) { + return DRWAV_FALSE; /* Failed to read the "fmt " chunk. */ + } + + /* Basic validation. */ + if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) || + (fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) || + (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) || + fmt.blockAlign == 0) { + return DRWAV_FALSE; /* Probably an invalid WAV file. */ + } + + + /* Translate the internal format. */ + translatedFormatTag = fmt.formatTag; + if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0); + } + + + /* + We need to enumerate over each chunk for two reasons: + 1) The "data" chunk may not be the next one + 2) We may want to report each chunk back to the client + + In order to correctly report each chunk back to the client we will need to keep looping until the end of the file. + */ + foundDataChunk = DRWAV_FALSE; + + /* The next chunk we care about is the "data" chunk. This is not necessarily the next chunk so we'll need to loop. */ + for (;;) + { + drwav_chunk_header header; + drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); + if (result != DRWAV_SUCCESS) { + if (!foundDataChunk) { + return DRWAV_FALSE; + } else { + break; /* Probably at the end of the file. Get out of the loop. */ + } + } + + /* Tell the client about this chunk. */ + if (!sequential && onChunk != NULL) { + drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt); + + /* + dr_wav may need to read the contents of the chunk, so we now need to seek back to the position before + we called the callback. + */ + if (callbackBytesRead > 0) { + if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) { + return DRWAV_FALSE; + } + } + } + + + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + + chunkSize = header.sizeInBytes; + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + if (drwav__fourcc_equal(header.id.fourcc, "data")) { + foundDataChunk = DRWAV_TRUE; + if (pWav->container != drwav_container_rf64) { /* The data chunk size for RF64 will always be set to 0xFFFFFFFF here. It was set to it's true value earlier. */ + dataChunkSize = chunkSize; + } + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) { + foundDataChunk = DRWAV_TRUE; + dataChunkSize = chunkSize; + } + } + + /* + If at this point we have found the data chunk and we're running in sequential mode, we need to break out of this loop. The reason for + this is that we would otherwise require a backwards seek which sequential mode forbids. + */ + if (foundDataChunk && sequential) { + break; + } + + /* Optional. Get the total sample count from the FACT chunk. This is useful for compressed formats. */ + if (pWav->container == drwav_container_riff) { + if (drwav__fourcc_equal(header.id.fourcc, "fact")) { + drwav_uint32 sampleCount; + if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) { + return DRWAV_FALSE; + } + chunkSize -= 4; + + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + + /* + The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this + for Microsoft ADPCM formats. + */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + sampleCountFromFactChunk = sampleCount; + } else { + sampleCountFromFactChunk = 0; + } + } + } else if (pWav->container == drwav_container_w64) { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) { + if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) { + return DRWAV_FALSE; + } + chunkSize -= 8; + + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + } + } else if (pWav->container == drwav_container_rf64) { + /* We retrieved the sample count from the ds64 chunk earlier so no need to do that here. */ + } + + /* "smpl" chunk. */ + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + if (drwav__fourcc_equal(header.id.fourcc, "smpl")) { + drwav_uint8 smplHeaderData[36]; /* 36 = size of the smpl header section, not including the loop data. */ + if (chunkSize >= sizeof(smplHeaderData)) { + drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor); + chunkSize -= bytesJustRead; + + if (bytesJustRead == sizeof(smplHeaderData)) { + drwav_uint32 iLoop; + + pWav->smpl.manufacturer = drwav__bytes_to_u32(smplHeaderData+0); + pWav->smpl.product = drwav__bytes_to_u32(smplHeaderData+4); + pWav->smpl.samplePeriod = drwav__bytes_to_u32(smplHeaderData+8); + pWav->smpl.midiUnityNotes = drwav__bytes_to_u32(smplHeaderData+12); + pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16); + pWav->smpl.smpteFormat = drwav__bytes_to_u32(smplHeaderData+20); + pWav->smpl.smpteOffset = drwav__bytes_to_u32(smplHeaderData+24); + pWav->smpl.numSampleLoops = drwav__bytes_to_u32(smplHeaderData+28); + pWav->smpl.samplerData = drwav__bytes_to_u32(smplHeaderData+32); + + for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) { + drwav_uint8 smplLoopData[24]; /* 24 = size of a loop section in the smpl chunk. */ + bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor); + chunkSize -= bytesJustRead; + + if (bytesJustRead == sizeof(smplLoopData)) { + pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0); + pWav->smpl.loops[iLoop].type = drwav__bytes_to_u32(smplLoopData+4); + pWav->smpl.loops[iLoop].start = drwav__bytes_to_u32(smplLoopData+8); + pWav->smpl.loops[iLoop].end = drwav__bytes_to_u32(smplLoopData+12); + pWav->smpl.loops[iLoop].fraction = drwav__bytes_to_u32(smplLoopData+16); + pWav->smpl.loops[iLoop].playCount = drwav__bytes_to_u32(smplLoopData+20); + } else { + break; /* Break from the smpl loop for loop. */ + } + } + } + } else { + /* Looks like invalid data. Ignore the chunk. */ + } + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) { + /* + This path will be hit when a W64 WAV file contains a smpl chunk. I don't have a sample file to test this path, so a contribution + is welcome to add support for this. + */ + } + } + + /* Make sure we seek past the padding. */ + chunkSize += header.paddingSize; + if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) { + break; + } + cursor += chunkSize; + + if (!foundDataChunk) { + pWav->dataChunkDataPos = cursor; + } + } + + /* If we haven't found a data chunk, return an error. */ + if (!foundDataChunk) { + return DRWAV_FALSE; + } + + /* We may have moved passed the data chunk. If so we need to move back. If running in sequential mode we can assume we are already sitting on the data chunk. */ + if (!sequential) { + if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) { + return DRWAV_FALSE; + } + cursor = pWav->dataChunkDataPos; + } + + + /* At this point we should be sitting on the first byte of the raw audio data. */ + + pWav->fmt = fmt; + pWav->sampleRate = fmt.sampleRate; + pWav->channels = fmt.channels; + pWav->bitsPerSample = fmt.bitsPerSample; + pWav->bytesRemaining = dataChunkSize; + pWav->translatedFormatTag = translatedFormatTag; + pWav->dataChunkDataSize = dataChunkSize; + + if (sampleCountFromFactChunk != 0) { + pWav->totalPCMFrameCount = sampleCountFromFactChunk; + } else { + pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav); + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 totalBlockHeaderSizeInBytes; + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + + /* Make sure any trailing partial block is accounted for. */ + if ((blockCount * fmt.blockAlign) < dataChunkSize) { + blockCount += 1; + } + + /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */ + totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels); + pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 totalBlockHeaderSizeInBytes; + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + + /* Make sure any trailing partial block is accounted for. */ + if ((blockCount * fmt.blockAlign) < dataChunkSize) { + blockCount += 1; + } + + /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */ + totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels); + pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; + + /* The header includes a decoded sample for each channel which acts as the initial predictor sample. */ + pWav->totalPCMFrameCount += blockCount; + } + } + + /* Some formats only support a certain number of channels. */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + if (pWav->channels > 2) { + return DRWAV_FALSE; + } + } + +#ifdef DR_WAV_LIBSNDFILE_COMPAT + /* + I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website), + it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count + from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct + way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should + always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my + correctness tests against libsndfile, and is disabled by default. + */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels; /* x2 because two samples per byte. */ + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; + pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels; + } +#endif + + return DRWAV_TRUE; +} + +DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + + return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); +} + + +static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + drwav_uint64 chunkSize = 4 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 24 = "fmt " chunk. */ + if (chunkSize > 0xFFFFFFFFUL) { + chunkSize = 0xFFFFFFFFUL; + } + + return (drwav_uint32)chunkSize; /* Safe cast due to the clamp above. */ +} + +static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + if (dataChunkSize <= 0xFFFFFFFFUL) { + return (drwav_uint32)dataChunkSize; + } else { + return 0xFFFFFFFFUL; + } +} + +static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize); + + return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize; /* +24 because W64 includes the size of the GUID and size fields. */ +} + +static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + return 24 + dataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */ +} + +static drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize) +{ + drwav_uint64 chunkSize = 4 + 36 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 36 = "ds64" chunk. 24 = "fmt " chunk. */ + if (chunkSize > 0xFFFFFFFFUL) { + chunkSize = 0xFFFFFFFFUL; + } + + return chunkSize; +} + +static drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize) +{ + return dataChunkSize; +} + + +static size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + + /* Generic write. Assumes no byte reordering required. */ + return pWav->onWrite(pWav->pUserData, pData, dataSize); +} + +static size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + + if (!drwav__is_little_endian()) { + value = drwav__bswap16(value); + } + + return drwav__write(pWav, &value, 2); +} + +static size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + + if (!drwav__is_little_endian()) { + value = drwav__bswap32(value); + } + + return drwav__write(pWav, &value, 4); +} + +static size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value) +{ + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->onWrite != NULL); + + if (!drwav__is_little_endian()) { + value = drwav__bswap64(value); + } + + return drwav__write(pWav, &value, 8); +} + + +static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pWav == NULL || onWrite == NULL) { + return DRWAV_FALSE; + } + + if (!isSequential && onSeek == NULL) { + return DRWAV_FALSE; /* <-- onSeek is required when in non-sequential mode. */ + } + + /* Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this. */ + if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) { + return DRWAV_FALSE; + } + if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) { + return DRWAV_FALSE; + } + + DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); + pWav->onWrite = onWrite; + pWav->onSeek = onSeek; + pWav->pUserData = pUserData; + pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); + + if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { + return DRWAV_FALSE; /* Invalid allocation callbacks. */ + } + + pWav->fmt.formatTag = (drwav_uint16)pFormat->format; + pWav->fmt.channels = (drwav_uint16)pFormat->channels; + pWav->fmt.sampleRate = pFormat->sampleRate; + pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8); + pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8); + pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->fmt.extendedSize = 0; + pWav->isSequentialWrite = isSequential; + + return DRWAV_TRUE; +} + +static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + /* The function assumes drwav_preinit_write() was called beforehand. */ + + size_t runningPos = 0; + drwav_uint64 initialDataChunkSize = 0; + drwav_uint64 chunkSizeFMT; + + /* + The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In + sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non- + sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek. + */ + if (pWav->isSequentialWrite) { + initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8; + + /* + The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64 + so for the sake of simplicity I'm not doing any validation for that. + */ + if (pFormat->container == drwav_container_riff) { + if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) { + return DRWAV_FALSE; /* Not enough room to store every sample. */ + } + } + } + + pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize; + + + /* "RIFF" chunk. */ + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize; /* +28 = "WAVE" + [sizeof "fmt " chunk] */ + runningPos += drwav__write(pWav, "RIFF", 4); + runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF); + runningPos += drwav__write(pWav, "WAVE", 4); + } else if (pFormat->container == drwav_container_w64) { + drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */ + runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF); + runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16); + } else if (pFormat->container == drwav_container_rf64) { + runningPos += drwav__write(pWav, "RF64", 4); + runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always 0xFFFFFFFF for RF64. Set to a proper value in the "ds64" chunk. */ + runningPos += drwav__write(pWav, "WAVE", 4); + } + + + /* "ds64" chunk (RF64 only). */ + if (pFormat->container == drwav_container_rf64) { + drwav_uint32 initialds64ChunkSize = 28; /* 28 = [Size of RIFF (8 bytes)] + [Size of DATA (8 bytes)] + [Sample Count (8 bytes)] + [Table Length (4 bytes)]. Table length always set to 0. */ + drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize; /* +8 for the ds64 header. */ + + runningPos += drwav__write(pWav, "ds64", 4); + runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize); /* Size of ds64. */ + runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize); /* Size of RIFF. Set to true value at the end. */ + runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize); /* Size of DATA. Set to true value at the end. */ + runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount); /* Sample count. */ + runningPos += drwav__write_u32ne_to_le(pWav, 0); /* Table length. Always set to zero in our case since we're not doing any other chunks than "DATA". */ + } + + + /* "fmt " chunk. */ + if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) { + chunkSizeFMT = 16; + runningPos += drwav__write(pWav, "fmt ", 4); + runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT); + } else if (pFormat->container == drwav_container_w64) { + chunkSizeFMT = 40; + runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT); + } + + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels); + runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate); + runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign); + runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample); + + pWav->dataChunkDataPos = runningPos; + + /* "data" chunk. */ + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize; + runningPos += drwav__write(pWav, "data", 4); + runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA); + } else if (pFormat->container == drwav_container_w64) { + drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */ + runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16); + runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA); + } else if (pFormat->container == drwav_container_rf64) { + runningPos += drwav__write(pWav, "data", 4); + runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always set to 0xFFFFFFFF for RF64. The true size of the data chunk is specified in the ds64 chunk. */ + } + + /* + The runningPos variable is incremented in the section above but is left unused which is causing some static analysis tools to detect it + as a dead store. I'm leaving this as-is for safety just in case I want to expand this function later to include other tags and want to + keep track of the running position for whatever reason. The line below should silence the static analysis tools. + */ + (void)runningPos; + + /* Set some properties for the client's convenience. */ + pWav->container = pFormat->container; + pWav->channels = (drwav_uint16)pFormat->channels; + pWav->sampleRate = pFormat->sampleRate; + pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->translatedFormatTag = (drwav_uint16)pFormat->format; + + return DRWAV_TRUE; +} + + +DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + + return drwav_init_write__internal(pWav, pFormat, 0); /* DRWAV_FALSE = Not Sequential */ +} + +DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + + return drwav_init_write__internal(pWav, pFormat, totalSampleCount); /* DRWAV_TRUE = Sequential */ +} + +DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + + return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks); +} + +DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + /* Casting totalSampleCount to drwav_int64 for VC6 compatibility. No issues in practice because nobody is going to exhaust the whole 63 bits. */ + drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0); + drwav_uint64 riffChunkSizeBytes; + drwav_uint64 fileSizeBytes = 0; + + if (pFormat->container == drwav_container_riff) { + riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes); + fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */ + } else if (pFormat->container == drwav_container_w64) { + riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes); + fileSizeBytes = riffChunkSizeBytes; + } else if (pFormat->container == drwav_container_rf64) { + riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes); + fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */ + } + + return fileSizeBytes; +} + + +#ifndef DR_WAV_NO_STDIO + +/* drwav_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */ +#include +static drwav_result drwav_result_from_errno(int e) +{ + switch (e) + { + case 0: return DRWAV_SUCCESS; + #ifdef EPERM + case EPERM: return DRWAV_INVALID_OPERATION; + #endif + #ifdef ENOENT + case ENOENT: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef ESRCH + case ESRCH: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef EINTR + case EINTR: return DRWAV_INTERRUPT; + #endif + #ifdef EIO + case EIO: return DRWAV_IO_ERROR; + #endif + #ifdef ENXIO + case ENXIO: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef E2BIG + case E2BIG: return DRWAV_INVALID_ARGS; + #endif + #ifdef ENOEXEC + case ENOEXEC: return DRWAV_INVALID_FILE; + #endif + #ifdef EBADF + case EBADF: return DRWAV_INVALID_FILE; + #endif + #ifdef ECHILD + case ECHILD: return DRWAV_ERROR; + #endif + #ifdef EAGAIN + case EAGAIN: return DRWAV_UNAVAILABLE; + #endif + #ifdef ENOMEM + case ENOMEM: return DRWAV_OUT_OF_MEMORY; + #endif + #ifdef EACCES + case EACCES: return DRWAV_ACCESS_DENIED; + #endif + #ifdef EFAULT + case EFAULT: return DRWAV_BAD_ADDRESS; + #endif + #ifdef ENOTBLK + case ENOTBLK: return DRWAV_ERROR; + #endif + #ifdef EBUSY + case EBUSY: return DRWAV_BUSY; + #endif + #ifdef EEXIST + case EEXIST: return DRWAV_ALREADY_EXISTS; + #endif + #ifdef EXDEV + case EXDEV: return DRWAV_ERROR; + #endif + #ifdef ENODEV + case ENODEV: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef ENOTDIR + case ENOTDIR: return DRWAV_NOT_DIRECTORY; + #endif + #ifdef EISDIR + case EISDIR: return DRWAV_IS_DIRECTORY; + #endif + #ifdef EINVAL + case EINVAL: return DRWAV_INVALID_ARGS; + #endif + #ifdef ENFILE + case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES; + #endif + #ifdef EMFILE + case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES; + #endif + #ifdef ENOTTY + case ENOTTY: return DRWAV_INVALID_OPERATION; + #endif + #ifdef ETXTBSY + case ETXTBSY: return DRWAV_BUSY; + #endif + #ifdef EFBIG + case EFBIG: return DRWAV_TOO_BIG; + #endif + #ifdef ENOSPC + case ENOSPC: return DRWAV_NO_SPACE; + #endif + #ifdef ESPIPE + case ESPIPE: return DRWAV_BAD_SEEK; + #endif + #ifdef EROFS + case EROFS: return DRWAV_ACCESS_DENIED; + #endif + #ifdef EMLINK + case EMLINK: return DRWAV_TOO_MANY_LINKS; + #endif + #ifdef EPIPE + case EPIPE: return DRWAV_BAD_PIPE; + #endif + #ifdef EDOM + case EDOM: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef ERANGE + case ERANGE: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef EDEADLK + case EDEADLK: return DRWAV_DEADLOCK; + #endif + #ifdef ENAMETOOLONG + case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG; + #endif + #ifdef ENOLCK + case ENOLCK: return DRWAV_ERROR; + #endif + #ifdef ENOSYS + case ENOSYS: return DRWAV_NOT_IMPLEMENTED; + #endif + #ifdef ENOTEMPTY + case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY; + #endif + #ifdef ELOOP + case ELOOP: return DRWAV_TOO_MANY_LINKS; + #endif + #ifdef ENOMSG + case ENOMSG: return DRWAV_NO_MESSAGE; + #endif + #ifdef EIDRM + case EIDRM: return DRWAV_ERROR; + #endif + #ifdef ECHRNG + case ECHRNG: return DRWAV_ERROR; + #endif + #ifdef EL2NSYNC + case EL2NSYNC: return DRWAV_ERROR; + #endif + #ifdef EL3HLT + case EL3HLT: return DRWAV_ERROR; + #endif + #ifdef EL3RST + case EL3RST: return DRWAV_ERROR; + #endif + #ifdef ELNRNG + case ELNRNG: return DRWAV_OUT_OF_RANGE; + #endif + #ifdef EUNATCH + case EUNATCH: return DRWAV_ERROR; + #endif + #ifdef ENOCSI + case ENOCSI: return DRWAV_ERROR; + #endif + #ifdef EL2HLT + case EL2HLT: return DRWAV_ERROR; + #endif + #ifdef EBADE + case EBADE: return DRWAV_ERROR; + #endif + #ifdef EBADR + case EBADR: return DRWAV_ERROR; + #endif + #ifdef EXFULL + case EXFULL: return DRWAV_ERROR; + #endif + #ifdef ENOANO + case ENOANO: return DRWAV_ERROR; + #endif + #ifdef EBADRQC + case EBADRQC: return DRWAV_ERROR; + #endif + #ifdef EBADSLT + case EBADSLT: return DRWAV_ERROR; + #endif + #ifdef EBFONT + case EBFONT: return DRWAV_INVALID_FILE; + #endif + #ifdef ENOSTR + case ENOSTR: return DRWAV_ERROR; + #endif + #ifdef ENODATA + case ENODATA: return DRWAV_NO_DATA_AVAILABLE; + #endif + #ifdef ETIME + case ETIME: return DRWAV_TIMEOUT; + #endif + #ifdef ENOSR + case ENOSR: return DRWAV_NO_DATA_AVAILABLE; + #endif + #ifdef ENONET + case ENONET: return DRWAV_NO_NETWORK; + #endif + #ifdef ENOPKG + case ENOPKG: return DRWAV_ERROR; + #endif + #ifdef EREMOTE + case EREMOTE: return DRWAV_ERROR; + #endif + #ifdef ENOLINK + case ENOLINK: return DRWAV_ERROR; + #endif + #ifdef EADV + case EADV: return DRWAV_ERROR; + #endif + #ifdef ESRMNT + case ESRMNT: return DRWAV_ERROR; + #endif + #ifdef ECOMM + case ECOMM: return DRWAV_ERROR; + #endif + #ifdef EPROTO + case EPROTO: return DRWAV_ERROR; + #endif + #ifdef EMULTIHOP + case EMULTIHOP: return DRWAV_ERROR; + #endif + #ifdef EDOTDOT + case EDOTDOT: return DRWAV_ERROR; + #endif + #ifdef EBADMSG + case EBADMSG: return DRWAV_BAD_MESSAGE; + #endif + #ifdef EOVERFLOW + case EOVERFLOW: return DRWAV_TOO_BIG; + #endif + #ifdef ENOTUNIQ + case ENOTUNIQ: return DRWAV_NOT_UNIQUE; + #endif + #ifdef EBADFD + case EBADFD: return DRWAV_ERROR; + #endif + #ifdef EREMCHG + case EREMCHG: return DRWAV_ERROR; + #endif + #ifdef ELIBACC + case ELIBACC: return DRWAV_ACCESS_DENIED; + #endif + #ifdef ELIBBAD + case ELIBBAD: return DRWAV_INVALID_FILE; + #endif + #ifdef ELIBSCN + case ELIBSCN: return DRWAV_INVALID_FILE; + #endif + #ifdef ELIBMAX + case ELIBMAX: return DRWAV_ERROR; + #endif + #ifdef ELIBEXEC + case ELIBEXEC: return DRWAV_ERROR; + #endif + #ifdef EILSEQ + case EILSEQ: return DRWAV_INVALID_DATA; + #endif + #ifdef ERESTART + case ERESTART: return DRWAV_ERROR; + #endif + #ifdef ESTRPIPE + case ESTRPIPE: return DRWAV_ERROR; + #endif + #ifdef EUSERS + case EUSERS: return DRWAV_ERROR; + #endif + #ifdef ENOTSOCK + case ENOTSOCK: return DRWAV_NOT_SOCKET; + #endif + #ifdef EDESTADDRREQ + case EDESTADDRREQ: return DRWAV_NO_ADDRESS; + #endif + #ifdef EMSGSIZE + case EMSGSIZE: return DRWAV_TOO_BIG; + #endif + #ifdef EPROTOTYPE + case EPROTOTYPE: return DRWAV_BAD_PROTOCOL; + #endif + #ifdef ENOPROTOOPT + case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE; + #endif + #ifdef EPROTONOSUPPORT + case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED; + #endif + #ifdef ESOCKTNOSUPPORT + case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED; + #endif + #ifdef EOPNOTSUPP + case EOPNOTSUPP: return DRWAV_INVALID_OPERATION; + #endif + #ifdef EPFNOSUPPORT + case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EAFNOSUPPORT + case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EADDRINUSE + case EADDRINUSE: return DRWAV_ALREADY_IN_USE; + #endif + #ifdef EADDRNOTAVAIL + case EADDRNOTAVAIL: return DRWAV_ERROR; + #endif + #ifdef ENETDOWN + case ENETDOWN: return DRWAV_NO_NETWORK; + #endif + #ifdef ENETUNREACH + case ENETUNREACH: return DRWAV_NO_NETWORK; + #endif + #ifdef ENETRESET + case ENETRESET: return DRWAV_NO_NETWORK; + #endif + #ifdef ECONNABORTED + case ECONNABORTED: return DRWAV_NO_NETWORK; + #endif + #ifdef ECONNRESET + case ECONNRESET: return DRWAV_CONNECTION_RESET; + #endif + #ifdef ENOBUFS + case ENOBUFS: return DRWAV_NO_SPACE; + #endif + #ifdef EISCONN + case EISCONN: return DRWAV_ALREADY_CONNECTED; + #endif + #ifdef ENOTCONN + case ENOTCONN: return DRWAV_NOT_CONNECTED; + #endif + #ifdef ESHUTDOWN + case ESHUTDOWN: return DRWAV_ERROR; + #endif + #ifdef ETOOMANYREFS + case ETOOMANYREFS: return DRWAV_ERROR; + #endif + #ifdef ETIMEDOUT + case ETIMEDOUT: return DRWAV_TIMEOUT; + #endif + #ifdef ECONNREFUSED + case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED; + #endif + #ifdef EHOSTDOWN + case EHOSTDOWN: return DRWAV_NO_HOST; + #endif + #ifdef EHOSTUNREACH + case EHOSTUNREACH: return DRWAV_NO_HOST; + #endif + #ifdef EALREADY + case EALREADY: return DRWAV_IN_PROGRESS; + #endif + #ifdef EINPROGRESS + case EINPROGRESS: return DRWAV_IN_PROGRESS; + #endif + #ifdef ESTALE + case ESTALE: return DRWAV_INVALID_FILE; + #endif + #ifdef EUCLEAN + case EUCLEAN: return DRWAV_ERROR; + #endif + #ifdef ENOTNAM + case ENOTNAM: return DRWAV_ERROR; + #endif + #ifdef ENAVAIL + case ENAVAIL: return DRWAV_ERROR; + #endif + #ifdef EISNAM + case EISNAM: return DRWAV_ERROR; + #endif + #ifdef EREMOTEIO + case EREMOTEIO: return DRWAV_IO_ERROR; + #endif + #ifdef EDQUOT + case EDQUOT: return DRWAV_NO_SPACE; + #endif + #ifdef ENOMEDIUM + case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST; + #endif + #ifdef EMEDIUMTYPE + case EMEDIUMTYPE: return DRWAV_ERROR; + #endif + #ifdef ECANCELED + case ECANCELED: return DRWAV_CANCELLED; + #endif + #ifdef ENOKEY + case ENOKEY: return DRWAV_ERROR; + #endif + #ifdef EKEYEXPIRED + case EKEYEXPIRED: return DRWAV_ERROR; + #endif + #ifdef EKEYREVOKED + case EKEYREVOKED: return DRWAV_ERROR; + #endif + #ifdef EKEYREJECTED + case EKEYREJECTED: return DRWAV_ERROR; + #endif + #ifdef EOWNERDEAD + case EOWNERDEAD: return DRWAV_ERROR; + #endif + #ifdef ENOTRECOVERABLE + case ENOTRECOVERABLE: return DRWAV_ERROR; + #endif + #ifdef ERFKILL + case ERFKILL: return DRWAV_ERROR; + #endif + #ifdef EHWPOISON + case EHWPOISON: return DRWAV_ERROR; + #endif + default: return DRWAV_ERROR; + } +} + +static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) +{ +#if _MSC_VER && _MSC_VER >= 1400 + errno_t err; +#endif + + if (ppFile != NULL) { + *ppFile = NULL; /* Safety. */ + } + + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRWAV_INVALID_ARGS; + } + +#if _MSC_VER && _MSC_VER >= 1400 + err = fopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drwav_result_from_errno(err); + } +#else +#if defined(_WIN32) || defined(__APPLE__) + *ppFile = fopen(pFilePath, pOpenMode); +#else + #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) + *ppFile = fopen64(pFilePath, pOpenMode); + #else + *ppFile = fopen(pFilePath, pOpenMode); + #endif +#endif + if (*ppFile == NULL) { + drwav_result result = drwav_result_from_errno(errno); + if (result == DRWAV_SUCCESS) { + result = DRWAV_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */ + } + + return result; + } +#endif + + return DRWAV_SUCCESS; +} + +/* +_wfopen() isn't always available in all compilation environments. + + * Windows only. + * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back). + * MinGW-64 (both 32- and 64-bit) seems to support it. + * MinGW wraps it in !defined(__STRICT_ANSI__). + * OpenWatcom wraps it in !defined(_NO_EXT_KEYS). + +This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs() +fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support. +*/ +#if defined(_WIN32) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) + #define DRWAV_HAS_WFOPEN + #endif +#endif + +static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (ppFile != NULL) { + *ppFile = NULL; /* Safety. */ + } + + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRWAV_INVALID_ARGS; + } + +#if defined(DRWAV_HAS_WFOPEN) + { + /* Use _wfopen() on Windows. */ + #if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drwav_result_from_errno(err); + } + #else + *ppFile = _wfopen(pFilePath, pOpenMode); + if (*ppFile == NULL) { + return drwav_result_from_errno(errno); + } + #endif + (void)pAllocationCallbacks; + } +#else + /* + Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can + think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for + maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility. + */ + { + mbstate_t mbs; + size_t lenMB; + const wchar_t* pFilePathTemp = pFilePath; + char* pFilePathMB = NULL; + char pOpenModeMB[32] = {0}; + + /* Get the length first. */ + DRWAV_ZERO_OBJECT(&mbs); + lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); + if (lenMB == (size_t)-1) { + return drwav_result_from_errno(errno); + } + + pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); + if (pFilePathMB == NULL) { + return DRWAV_OUT_OF_MEMORY; + } + + pFilePathTemp = pFilePath; + DRWAV_ZERO_OBJECT(&mbs); + wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); + + /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */ + { + size_t i = 0; + for (;;) { + if (pOpenMode[i] == 0) { + pOpenModeMB[i] = '\0'; + break; + } + + pOpenModeMB[i] = (char)pOpenMode[i]; + i += 1; + } + } + + *ppFile = fopen(pFilePathMB, pOpenModeMB); + + drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks); + } + + if (*ppFile == NULL) { + return DRWAV_ERROR; + } +#endif + + return DRWAV_SUCCESS; +} + + +static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite) +{ + return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData); +} + +static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin) +{ + return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); +} + + +static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav_bool32 result; + + result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + + result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + + return DRWAV_TRUE; +} + +DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + /* This takes ownership of the FILE* object. */ + return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + /* This takes ownership of the FILE* object. */ + return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks); +} + + +static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav_bool32 result; + + result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + + result = drwav_init_write__internal(pWav, pFormat, totalSampleCount); + if (result != DRWAV_TRUE) { + fclose(pFile); + return result; + } + + return DRWAV_TRUE; +} + +static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + /* This takes ownership of the FILE* object. */ + return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); +} + +static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + FILE* pFile; + if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) { + return DRWAV_FALSE; + } + + /* This takes ownership of the FILE* object. */ + return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + + return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + + return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} +#endif /* DR_WAV_NO_STDIO */ + + +static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + drwav* pWav = (drwav*)pUserData; + size_t bytesRemaining; + + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos); + + bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead); + pWav->memoryStream.currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav* pWav = (drwav*)pUserData; + DRWAV_ASSERT(pWav != NULL); + + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) { + return DRWAV_FALSE; /* Trying to seek too far forward. */ + } + } else { + if (pWav->memoryStream.currentReadPos < (size_t)-offset) { + return DRWAV_FALSE; /* Trying to seek too far backwards. */ + } + } + + /* This will never underflow thanks to the clamps above. */ + pWav->memoryStream.currentReadPos += offset; + } else { + if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) { + pWav->memoryStream.currentReadPos = offset; + } else { + return DRWAV_FALSE; /* Trying to seek too far forward. */ + } + } + + return DRWAV_TRUE; +} + +static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite) +{ + drwav* pWav = (drwav*)pUserData; + size_t bytesRemaining; + + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos); + + bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos; + if (bytesRemaining < bytesToWrite) { + /* Need to reallocate. */ + void* pNewData; + size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2; + + /* If doubling wasn't enough, just make it the minimum required size to write the data. */ + if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) { + newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite; + } + + pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks); + if (pNewData == NULL) { + return 0; + } + + *pWav->memoryStreamWrite.ppData = pNewData; + pWav->memoryStreamWrite.dataCapacity = newDataCapacity; + } + + DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite); + + pWav->memoryStreamWrite.currentWritePos += bytesToWrite; + if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) { + pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos; + } + + *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize; + + return bytesToWrite; +} + +static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav* pWav = (drwav*)pUserData; + DRWAV_ASSERT(pWav != NULL); + + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) { + offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos); /* Trying to seek too far forward. */ + } + } else { + if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) { + offset = -(int)pWav->memoryStreamWrite.currentWritePos; /* Trying to seek too far backwards. */ + } + } + + /* This will never underflow thanks to the clamps above. */ + pWav->memoryStreamWrite.currentWritePos += offset; + } else { + if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) { + pWav->memoryStreamWrite.currentWritePos = offset; + } else { + pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize; /* Trying to seek too far forward. */ + } + } + + return DRWAV_TRUE; +} + +DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (data == NULL || dataSize == 0) { + return DRWAV_FALSE; + } + + if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + + pWav->memoryStream.data = (const drwav_uint8*)data; + pWav->memoryStream.dataSize = dataSize; + pWav->memoryStream.currentReadPos = 0; + + return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); +} + + +static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (ppData == NULL || pDataSize == NULL) { + return DRWAV_FALSE; + } + + *ppData = NULL; /* Important because we're using realloc()! */ + *pDataSize = 0; + + if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) { + return DRWAV_FALSE; + } + + pWav->memoryStreamWrite.ppData = ppData; + pWav->memoryStreamWrite.pDataSize = pDataSize; + pWav->memoryStreamWrite.dataSize = 0; + pWav->memoryStreamWrite.dataCapacity = 0; + pWav->memoryStreamWrite.currentWritePos = 0; + + return drwav_init_write__internal(pWav, pFormat, totalSampleCount); +} + +DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); +} + +DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pFormat == NULL) { + return DRWAV_FALSE; + } + + return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); +} + + + +DRWAV_API drwav_result drwav_uninit(drwav* pWav) +{ + drwav_result result = DRWAV_SUCCESS; + + if (pWav == NULL) { + return DRWAV_INVALID_ARGS; + } + + /* + If the drwav object was opened in write mode we'll need to finalize a few things: + - Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers. + - Set the size of the "data" chunk. + */ + if (pWav->onWrite != NULL) { + drwav_uint32 paddingSize = 0; + + /* Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding. */ + if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { + paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize); + } else { + paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize); + } + + if (paddingSize > 0) { + drwav_uint64 paddingData = 0; + drwav__write(pWav, &paddingData, paddingSize); /* Byte order does not matter for this. */ + } + + /* + Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need + to do this when using non-sequential mode. + */ + if (pWav->onSeek && !pWav->isSequentialWrite) { + if (pWav->container == drwav_container_riff) { + /* The "RIFF" chunk size. */ + if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) { + drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize); + drwav__write_u32ne_to_le(pWav, riffChunkSize); + } + + /* the "data" chunk size. */ + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) { + drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize); + drwav__write_u32ne_to_le(pWav, dataChunkSize); + } + } else if (pWav->container == drwav_container_w64) { + /* The "RIFF" chunk size. */ + if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) { + drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, riffChunkSize); + } + + /* The "data" chunk size. */ + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) { + drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, dataChunkSize); + } + } else if (pWav->container == drwav_container_rf64) { + /* We only need to update the ds64 chunk. The "RIFF" and "data" chunks always have their sizes set to 0xFFFFFFFF for RF64. */ + int ds64BodyPos = 12 + 8; + + /* The "RIFF" chunk size. */ + if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) { + drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, riffChunkSize); + } + + /* The "data" chunk size. */ + if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) { + drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize); + drwav__write_u64ne_to_le(pWav, dataChunkSize); + } + } + } + + /* Validation for sequential mode. */ + if (pWav->isSequentialWrite) { + if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) { + result = DRWAV_INVALID_FILE; + } + } + } + +#ifndef DR_WAV_NO_STDIO + /* + If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file() + was used by looking at the onRead and onSeek callbacks. + */ + if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) { + fclose((FILE*)pWav->pUserData); + } +#endif + + return result; +} + + + +DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut) +{ + size_t bytesRead; + + if (pWav == NULL || bytesToRead == 0) { + return 0; + } + + if (bytesToRead > pWav->bytesRemaining) { + bytesToRead = (size_t)pWav->bytesRemaining; + } + + if (pBufferOut != NULL) { + bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead); + } else { + /* We need to seek. If we fail, we need to read-and-discard to make sure we get a good byte count. */ + bytesRead = 0; + while (bytesRead < bytesToRead) { + size_t bytesToSeek = (bytesToRead - bytesRead); + if (bytesToSeek > 0x7FFFFFFF) { + bytesToSeek = 0x7FFFFFFF; + } + + if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) { + break; + } + + bytesRead += bytesToSeek; + } + + /* When we get here we may need to read-and-discard some data. */ + while (bytesRead < bytesToRead) { + drwav_uint8 buffer[4096]; + size_t bytesSeeked; + size_t bytesToSeek = (bytesToRead - bytesRead); + if (bytesToSeek > sizeof(buffer)) { + bytesToSeek = sizeof(buffer); + } + + bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek); + bytesRead += bytesSeeked; + + if (bytesSeeked < bytesToSeek) { + break; /* Reached the end. */ + } + } + } + + pWav->bytesRemaining -= bytesRead; + return bytesRead; +} + + + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + drwav_uint32 bytesPerFrame; + drwav_uint64 bytesToRead; /* Intentionally uint64 instead of size_t so we can do a check that we're not reading too much on 32-bit builds. */ + + if (pWav == NULL || framesToRead == 0) { + return 0; + } + + /* Cannot use this function for compressed formats. */ + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + return 0; + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + /* Don't try to read more samples than can potentially fit in the output buffer. */ + bytesToRead = framesToRead * bytesPerFrame; + if (bytesToRead > DRWAV_SIZE_MAX) { + bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; /* Round the number of bytes to read to a clean frame boundary. */ + } + + /* + Doing an explicit check here just to make it clear that we don't want to be attempt to read anything if there's no bytes to read. There + *could* be a time where it evaluates to 0 due to overflowing. + */ + if (bytesToRead == 0) { + return 0; + } + + return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); + + if (pBufferOut != NULL) { + drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag); + } + + return framesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) +{ + if (drwav__is_little_endian()) { + return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); + } else { + return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut); + } +} + + + +DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav) +{ + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; /* No seeking in write mode. */ + } + + if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) { + return DRWAV_FALSE; + } + + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + pWav->compressed.iCurrentPCMFrame = 0; + + /* Cached data needs to be cleared for compressed formats. */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + DRWAV_ZERO_OBJECT(&pWav->msadpcm); + } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + DRWAV_ZERO_OBJECT(&pWav->ima); + } else { + DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */ + } + } + + pWav->bytesRemaining = pWav->dataChunkDataSize; + return DRWAV_TRUE; +} + +DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex) +{ + /* Seeking should be compatible with wave files > 2GB. */ + + if (pWav == NULL || pWav->onSeek == NULL) { + return DRWAV_FALSE; + } + + /* No seeking in write mode. */ + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; + } + + /* If there are no samples, just return DRWAV_TRUE without doing anything. */ + if (pWav->totalPCMFrameCount == 0) { + return DRWAV_TRUE; + } + + /* Make sure the sample is clamped. */ + if (targetFrameIndex >= pWav->totalPCMFrameCount) { + targetFrameIndex = pWav->totalPCMFrameCount - 1; + } + + /* + For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need + to seek back to the start. + */ + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + /* TODO: This can be optimized. */ + + /* + If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards, + we first need to seek back to the start and then just do the same thing as a forward seek. + */ + if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) { + if (!drwav_seek_to_first_pcm_frame(pWav)) { + return DRWAV_FALSE; + } + } + + if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) { + drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame; + + drwav_int16 devnull[2048]; + while (offsetInFrames > 0) { + drwav_uint64 framesRead = 0; + drwav_uint64 framesToRead = offsetInFrames; + if (framesToRead > drwav_countof(devnull)/pWav->channels) { + framesToRead = drwav_countof(devnull)/pWav->channels; + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull); + } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull); + } else { + DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */ + } + + if (framesRead != framesToRead) { + return DRWAV_FALSE; + } + + offsetInFrames -= framesRead; + } + } + } else { + drwav_uint64 totalSizeInBytes; + drwav_uint64 currentBytePos; + drwav_uint64 targetBytePos; + drwav_uint64 offset; + + totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav); + DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining); + + currentBytePos = totalSizeInBytes - pWav->bytesRemaining; + targetBytePos = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav); + + if (currentBytePos < targetBytePos) { + /* Offset forwards. */ + offset = (targetBytePos - currentBytePos); + } else { + /* Offset backwards. */ + if (!drwav_seek_to_first_pcm_frame(pWav)) { + return DRWAV_FALSE; + } + offset = targetBytePos; + } + + while (offset > 0) { + int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset); + if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + + pWav->bytesRemaining -= offset32; + offset -= offset32; + } + } + + return DRWAV_TRUE; +} + + +DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData) +{ + size_t bytesWritten; + + if (pWav == NULL || bytesToWrite == 0 || pData == NULL) { + return 0; + } + + bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite); + pWav->dataChunkDataSize += bytesWritten; + + return bytesWritten; +} + + +DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + drwav_uint64 bytesToWrite; + drwav_uint64 bytesWritten; + const drwav_uint8* pRunningData; + + if (pWav == NULL || framesToWrite == 0 || pData == NULL) { + return 0; + } + + bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); + if (bytesToWrite > DRWAV_SIZE_MAX) { + return 0; + } + + bytesWritten = 0; + pRunningData = (const drwav_uint8*)pData; + + while (bytesToWrite > 0) { + size_t bytesJustWritten; + drwav_uint64 bytesToWriteThisIteration; + + bytesToWriteThisIteration = bytesToWrite; + DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */ + + bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData); + if (bytesJustWritten == 0) { + break; + } + + bytesToWrite -= bytesJustWritten; + bytesWritten += bytesJustWritten; + pRunningData += bytesJustWritten; + } + + return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; +} + +DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + drwav_uint64 bytesToWrite; + drwav_uint64 bytesWritten; + drwav_uint32 bytesPerSample; + const drwav_uint8* pRunningData; + + if (pWav == NULL || framesToWrite == 0 || pData == NULL) { + return 0; + } + + bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); + if (bytesToWrite > DRWAV_SIZE_MAX) { + return 0; + } + + bytesWritten = 0; + pRunningData = (const drwav_uint8*)pData; + + bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels; + + while (bytesToWrite > 0) { + drwav_uint8 temp[4096]; + drwav_uint32 sampleCount; + size_t bytesJustWritten; + drwav_uint64 bytesToWriteThisIteration; + + bytesToWriteThisIteration = bytesToWrite; + DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */ + + /* + WAV files are always little-endian. We need to byte swap on big-endian architectures. Since our input buffer is read-only we need + to use an intermediary buffer for the conversion. + */ + sampleCount = sizeof(temp)/bytesPerSample; + + if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) { + bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample; + } + + DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration); + drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag); + + bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp); + if (bytesJustWritten == 0) { + break; + } + + bytesToWrite -= bytesJustWritten; + bytesWritten += bytesJustWritten; + pRunningData += bytesJustWritten; + } + + return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; +} + +DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) +{ + if (drwav__is_little_endian()) { + return drwav_write_pcm_frames_le(pWav, framesToWrite, pData); + } else { + return drwav_write_pcm_frames_be(pWav, framesToWrite, pData); + } +} + + +static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(framesToRead > 0); + + /* TODO: Lots of room for optimization here. */ + + while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + /* If there are no cached frames we need to load a new block. */ + if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + /* Mono. */ + drwav_uint8 header[7]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1); + pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3); + pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5); + pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0]; + pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.cachedFrameCount = 2; + } else { + /* Stereo. */ + drwav_uint8 header[14]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.predictor[1] = header[1]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2); + pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4); + pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6); + pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8); + pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10); + pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12); + + pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0]; + pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0]; + pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1]; + pWav->msadpcm.cachedFrameCount = 2; + } + } + + /* Output anything that's cached. */ + while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pBufferOut != NULL) { + drwav_uint32 iSample = 0; + for (iSample = 0; iSample < pWav->channels; iSample += 1) { + pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample]; + } + + pBufferOut += pWav->channels; + } + + framesToRead -= 1; + totalFramesRead += 1; + pWav->compressed.iCurrentPCMFrame += 1; + pWav->msadpcm.cachedFrameCount -= 1; + } + + if (framesToRead == 0) { + return totalFramesRead; + } + + + /* + If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next + loop iteration which will trigger the loading of a new block. + */ + if (pWav->msadpcm.cachedFrameCount == 0) { + if (pWav->msadpcm.bytesRemainingInBlock == 0) { + continue; + } else { + static drwav_int32 adaptationTable[] = { + 230, 230, 230, 230, 307, 409, 512, 614, + 768, 614, 512, 409, 307, 230, 230, 230 + }; + static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 }; + static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 }; + + drwav_uint8 nibbles; + drwav_int32 nibble0; + drwav_int32 nibble1; + + if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) { + return totalFramesRead; + } + pWav->msadpcm.bytesRemainingInBlock -= 1; + + /* TODO: Optimize away these if statements. */ + nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; } + nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; } + + if (pWav->channels == 1) { + /* Mono. */ + drwav_int32 newSample0; + drwav_int32 newSample1; + + newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample0; + + + newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[0]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample1; + + + pWav->msadpcm.cachedFrames[2] = newSample0; + pWav->msadpcm.cachedFrames[3] = newSample1; + pWav->msadpcm.cachedFrameCount = 2; + } else { + /* Stereo. */ + drwav_int32 newSample0; + drwav_int32 newSample1; + + /* Left. */ + newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; + pWav->msadpcm.prevFrames[0][1] = newSample0; + + + /* Right. */ + newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[1]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + + pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8; + if (pWav->msadpcm.delta[1] < 16) { + pWav->msadpcm.delta[1] = 16; + } + + pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1]; + pWav->msadpcm.prevFrames[1][1] = newSample1; + + pWav->msadpcm.cachedFrames[2] = newSample0; + pWav->msadpcm.cachedFrames[3] = newSample1; + pWav->msadpcm.cachedFrameCount = 1; + } + } + } + } + + return totalFramesRead; +} + + +static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead = 0; + drwav_uint32 iChannel; + + static drwav_int32 indexTable[16] = { + -1, -1, -1, -1, 2, 4, 6, 8, + -1, -1, -1, -1, 2, 4, 6, 8 + }; + + static drwav_int32 stepTable[89] = { + 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, + 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, + 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, + 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, + 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, + 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, + 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, + 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, + 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 + }; + + DRWAV_ASSERT(pWav != NULL); + DRWAV_ASSERT(framesToRead > 0); + + /* TODO: Lots of room for optimization here. */ + + while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + /* If there are no cached samples we need to load a new block. */ + if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + /* Mono. */ + drwav_uint8 header[4]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + if (header[2] >= drwav_countof(stepTable)) { + pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); + pWav->ima.bytesRemainingInBlock = 0; + return totalFramesRead; /* Invalid data. */ + } + + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0]; + pWav->ima.cachedFrameCount = 1; + } else { + /* Stereo. */ + drwav_uint8 header[8]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) { + pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); + pWav->ima.bytesRemainingInBlock = 0; + return totalFramesRead; /* Invalid data. */ + } + + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4); + pWav->ima.stepIndex[1] = header[6]; + + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0]; + pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1]; + pWav->ima.cachedFrameCount = 1; + } + } + + /* Output anything that's cached. */ + while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) { + if (pBufferOut != NULL) { + drwav_uint32 iSample; + for (iSample = 0; iSample < pWav->channels; iSample += 1) { + pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample]; + } + pBufferOut += pWav->channels; + } + + framesToRead -= 1; + totalFramesRead += 1; + pWav->compressed.iCurrentPCMFrame += 1; + pWav->ima.cachedFrameCount -= 1; + } + + if (framesToRead == 0) { + return totalFramesRead; + } + + /* + If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next + loop iteration which will trigger the loading of a new block. + */ + if (pWav->ima.cachedFrameCount == 0) { + if (pWav->ima.bytesRemainingInBlock == 0) { + continue; + } else { + /* + From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the + left channel, 4 bytes for the right channel. + */ + pWav->ima.cachedFrameCount = 8; + for (iChannel = 0; iChannel < pWav->channels; ++iChannel) { + drwav_uint32 iByte; + drwav_uint8 nibbles[4]; + if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) { + pWav->ima.cachedFrameCount = 0; + return totalFramesRead; + } + pWav->ima.bytesRemainingInBlock -= 4; + + for (iByte = 0; iByte < 4; ++iByte) { + drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0); + drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4); + + drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]]; + drwav_int32 predictor = pWav->ima.predictor[iChannel]; + + drwav_int32 diff = step >> 3; + if (nibble0 & 1) diff += step >> 2; + if (nibble0 & 2) diff += step >> 1; + if (nibble0 & 4) diff += step; + if (nibble0 & 8) diff = -diff; + + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor; + + + step = stepTable[pWav->ima.stepIndex[iChannel]]; + predictor = pWav->ima.predictor[iChannel]; + + diff = step >> 3; + if (nibble1 & 1) diff += step >> 2; + if (nibble1 & 2) diff += step >> 1; + if (nibble1 & 4) diff += step; + if (nibble1 & 8) diff = -diff; + + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor; + } + } + } + } + } + + return totalFramesRead; +} + + +#ifndef DR_WAV_NO_CONVERSION_API +static unsigned short g_drwavAlawTable[256] = { + 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580, + 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0, + 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600, + 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00, + 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58, + 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58, + 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960, + 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0, + 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80, + 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40, + 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00, + 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500, + 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8, + 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8, + 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0, + 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350 +}; + +static unsigned short g_drwavMulawTable[256] = { + 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84, + 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84, + 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004, + 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844, + 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64, + 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74, + 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C, + 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000, + 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C, + 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C, + 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC, + 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC, + 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C, + 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C, + 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084, + 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000 +}; + +static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavAlawTable[sampleIn]; +} + +static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavMulawTable[sampleIn]; +} + + + +static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + + /* Special case for 8-bit sample data because it's treated as unsigned. */ + if (bytesPerSample == 1) { + drwav_u8_to_s16(pOut, pIn, totalSampleCount); + return; + } + + + /* Slightly more optimal implementation for common formats. */ + if (bytesPerSample == 2) { + for (i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int16*)pIn)[i]; + } + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s16(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount); + return; + } + + + /* Anything more than 64 bits per sample is not supported. */ + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + + + /* Generic, slow converter. */ + for (i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (drwav_int16)((drwav_int64)sample >> 48); + } +} + +static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */ + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} + +static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint32 bytesPerFrame; + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + /* Fast path. */ + if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + /* Don't try to read more samples than can potentially fit in the output buffer. */ + if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels; + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut); + } + + return 0; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + + +DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x << 8; + r = r - 32768; + pOut[i] = (short)r; + } +} + +DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8; + r = x >> 8; + pOut[i] = (short)r; + } +} + +DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x >> 16; + pOut[i] = (short)r; + } +} + +DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + float x = pIn[i]; + float c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5f); + r = r - 32768; + pOut[i] = (short)r; + } +} + +DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount) +{ + int r; + size_t i; + for (i = 0; i < sampleCount; ++i) { + double x = pIn[i]; + double c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5); + r = r - 32768; + pOut[i] = (short)r; + } +} + +DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + for (i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__alaw_to_s16(pIn[i]); + } +} + +DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + for (i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__mulaw_to_s16(pIn[i]); + } +} + + + +static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + + /* Special case for 8-bit sample data because it's treated as unsigned. */ + if (bytesPerSample == 1) { + drwav_u8_to_f32(pOut, pIn, sampleCount); + return; + } + + /* Slightly more optimal implementation for common formats. */ + if (bytesPerSample == 2) { + drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_f32(pOut, pIn, sampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount); + return; + } + + + /* Anything more than 64 bits per sample is not supported. */ + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); + return; + } + + + /* Generic, slow converter. */ + for (i = 0; i < sampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0); + } +} + +static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + unsigned int i; + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((const float*)pIn)[i]; + } + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount); + return; + } else { + /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */ + DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); + return; + } +} + + +static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + /* + We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't + want to duplicate that code. + */ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + + drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */ + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + /* + We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't + want to duplicate that code. + */ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + + drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */ + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + + /* Fast path. */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + /* Don't try to read more samples than can potentially fit in the output buffer. */ + if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels; + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut); + } + + return 0; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + + +DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + +#ifdef DR_WAV_LIBSNDFILE_COMPAT + /* + It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears + libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note + the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated + correctness testing. This is disabled by default. + */ + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (pIn[i] / 256.0f) * 2 - 1; + } +#else + for (i = 0; i < sampleCount; ++i) { + float x = pIn[i]; + x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */ + x = x - 1; /* 0..2 to -1..1 */ + + *pOut++ = x; + } +#endif +} + +DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] * 0.000030517578125f; + } +} + +DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + double x; + drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) << 8); + drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16); + drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24); + + x = (double)((drwav_int32)(a | b | c) >> 8); + *pOut++ = (float)(x * 0.00000011920928955078125); + } +} + +DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + size_t i; + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (float)(pIn[i] / 2147483648.0); + } +} + +DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (float)pIn[i]; + } +} + +DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f; + } +} + +DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f; + } +} + + + +static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + unsigned int i; + + /* Special case for 8-bit sample data because it's treated as unsigned. */ + if (bytesPerSample == 1) { + drwav_u8_to_s32(pOut, pIn, totalSampleCount); + return; + } + + /* Slightly more optimal implementation for common formats. */ + if (bytesPerSample == 2) { + drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s32(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + for (i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int32*)pIn)[i]; + } + return; + } + + + /* Anything more than 64 bits per sample is not supported. */ + if (bytesPerSample > 8) { + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + + + /* Generic, slow converter. */ + for (i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample; j += 1) { + DRWAV_ASSERT(j < 8); + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (drwav_int32)((drwav_int64)sample >> 32); + } +} + +static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */ + DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} + + +static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + drwav_uint32 bytesPerFrame; + + /* Fast path. */ + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) { + return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); + } + + bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + /* + We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't + want to duplicate that code. + */ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + + drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */ + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + /* + We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't + want to duplicate that code. + */ + drwav_uint64 totalFramesRead = 0; + drwav_int16 samples16[2048]; + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16); + if (framesRead == 0) { + break; + } + + drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */ + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 totalFramesRead; + drwav_uint8 sampleData[4096]; + + drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); + if (bytesPerFrame == 0) { + return 0; + } + + totalFramesRead = 0; + + while (framesToRead > 0) { + drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData); + if (framesRead == 0) { + break; + } + + drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels)); + + pBufferOut += framesRead*pWav->channels; + framesToRead -= framesRead; + totalFramesRead += framesRead; + } + + return totalFramesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + if (pWav == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drwav_read_pcm_frames(pWav, framesToRead, NULL); + } + + /* Don't try to read more samples than can potentially fit in the output buffer. */ + if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) { + framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels; + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut); + } + + return 0; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { + drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + +DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) +{ + drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); + if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { + drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); + } + + return framesRead; +} + + +DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((int)pIn[i] - 128) << 24; + } +} + +DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] << 16; + } +} + +DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + unsigned int s0 = pIn[i*3 + 0]; + unsigned int s1 = pIn[i*3 + 1]; + unsigned int s2 = pIn[i*3 + 2]; + + drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24)); + *pOut++ = sample32; + } +} + +DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} + +DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} + +DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i = 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16; + } +} + +DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + size_t i; + + if (pOut == NULL || pIn == NULL) { + return; + } + + for (i= 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16; + } +} + + + +static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + drwav_int16* pSampleData; + drwav_uint64 framesRead; + + DRWAV_ASSERT(pWav != NULL); + + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; /* File's too big. */ + } + + pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */ + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; /* Failed to allocate memory. */ + } + + framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; /* There was an error reading the samples. */ + } + + drwav_uninit(pWav); + + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + + return pSampleData; +} + +static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + float* pSampleData; + drwav_uint64 framesRead; + + DRWAV_ASSERT(pWav != NULL); + + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; /* File's too big. */ + } + + pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */ + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; /* Failed to allocate memory. */ + } + + framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; /* There was an error reading the samples. */ + } + + drwav_uninit(pWav); + + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + + return pSampleData; +} + +static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) +{ + drwav_uint64 sampleDataSize; + drwav_int32* pSampleData; + drwav_uint64 framesRead; + + DRWAV_ASSERT(pWav != NULL); + + sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; /* File's too big. */ + } + + pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */ + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; /* Failed to allocate memory. */ + } + + framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); + if (framesRead != pWav->totalPCMFrameCount) { + drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); + drwav_uninit(pWav); + return NULL; /* There was an error reading the samples. */ + } + + drwav_uninit(pWav); + + if (sampleRate) { + *sampleRate = pWav->sampleRate; + } + if (channels) { + *channels = pWav->channels; + } + if (totalFrameCount) { + *totalFrameCount = pWav->totalPCMFrameCount; + } + + return pSampleData; +} + + + +DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +#ifndef DR_WAV_NO_STDIO +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + + +DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (channelsOut) { + *channelsOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +#endif + +DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} + +DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + drwav wav; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalFrameCountOut) { + *totalFrameCountOut = 0; + } + + if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { + return NULL; + } + + return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); +} +#endif /* DR_WAV_NO_CONVERSION_API */ + + +DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + drwav__free_from_callbacks(p, pAllocationCallbacks); + } else { + drwav__free_default(p, NULL); + } +} + +DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data) +{ + return drwav__bytes_to_u16(data); +} + +DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data) +{ + return drwav__bytes_to_s16(data); +} + +DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data) +{ + return drwav__bytes_to_u32(data); +} + +DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data) +{ + return drwav__bytes_to_s32(data); +} + +DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data) +{ + return drwav__bytes_to_u64(data); +} + +DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data) +{ + return drwav__bytes_to_s64(data); +} + + +DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) +{ + return drwav__guid_equal(a, b); +} + +DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b) +{ + return drwav__fourcc_equal(a, b); +} + +#endif /* dr_wav_c */ +#endif /* DR_WAV_IMPLEMENTATION */ + +/* +RELEASE NOTES - v0.11.0 +======================= +Version 0.11.0 has breaking API changes. + +Improved Client-Defined Memory Allocation +----------------------------------------- +The main change with this release is the addition of a more flexible way of implementing custom memory allocation routines. The +existing system of DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE are still in place and will be used by default when no custom +allocation callbacks are specified. + +To use the new system, you pass in a pointer to a drwav_allocation_callbacks object to drwav_init() and family, like this: + + void* my_malloc(size_t sz, void* pUserData) + { + return malloc(sz); + } + void* my_realloc(void* p, size_t sz, void* pUserData) + { + return realloc(p, sz); + } + void my_free(void* p, void* pUserData) + { + free(p); + } + + ... + + drwav_allocation_callbacks allocationCallbacks; + allocationCallbacks.pUserData = &myData; + allocationCallbacks.onMalloc = my_malloc; + allocationCallbacks.onRealloc = my_realloc; + allocationCallbacks.onFree = my_free; + drwav_init_file(&wav, "my_file.wav", &allocationCallbacks); + +The advantage of this new system is that it allows you to specify user data which will be passed in to the allocation routines. + +Passing in null for the allocation callbacks object will cause dr_wav to use defaults which is the same as DRWAV_MALLOC, +DRWAV_REALLOC and DRWAV_FREE and the equivalent of how it worked in previous versions. + +Every API that opens a drwav object now takes this extra parameter. These include the following: + + drwav_init() + drwav_init_ex() + drwav_init_file() + drwav_init_file_ex() + drwav_init_file_w() + drwav_init_file_w_ex() + drwav_init_memory() + drwav_init_memory_ex() + drwav_init_write() + drwav_init_write_sequential() + drwav_init_write_sequential_pcm_frames() + drwav_init_file_write() + drwav_init_file_write_sequential() + drwav_init_file_write_sequential_pcm_frames() + drwav_init_file_write_w() + drwav_init_file_write_sequential_w() + drwav_init_file_write_sequential_pcm_frames_w() + drwav_init_memory_write() + drwav_init_memory_write_sequential() + drwav_init_memory_write_sequential_pcm_frames() + drwav_open_and_read_pcm_frames_s16() + drwav_open_and_read_pcm_frames_f32() + drwav_open_and_read_pcm_frames_s32() + drwav_open_file_and_read_pcm_frames_s16() + drwav_open_file_and_read_pcm_frames_f32() + drwav_open_file_and_read_pcm_frames_s32() + drwav_open_file_and_read_pcm_frames_s16_w() + drwav_open_file_and_read_pcm_frames_f32_w() + drwav_open_file_and_read_pcm_frames_s32_w() + drwav_open_memory_and_read_pcm_frames_s16() + drwav_open_memory_and_read_pcm_frames_f32() + drwav_open_memory_and_read_pcm_frames_s32() + +Endian Improvements +------------------- +Previously, the following APIs returned little-endian audio data. These now return native-endian data. This improves compatibility +on big-endian architectures. + + drwav_read_pcm_frames() + drwav_read_pcm_frames_s16() + drwav_read_pcm_frames_s32() + drwav_read_pcm_frames_f32() + drwav_open_and_read_pcm_frames_s16() + drwav_open_and_read_pcm_frames_s32() + drwav_open_and_read_pcm_frames_f32() + drwav_open_file_and_read_pcm_frames_s16() + drwav_open_file_and_read_pcm_frames_s32() + drwav_open_file_and_read_pcm_frames_f32() + drwav_open_file_and_read_pcm_frames_s16_w() + drwav_open_file_and_read_pcm_frames_s32_w() + drwav_open_file_and_read_pcm_frames_f32_w() + drwav_open_memory_and_read_pcm_frames_s16() + drwav_open_memory_and_read_pcm_frames_s32() + drwav_open_memory_and_read_pcm_frames_f32() + +APIs have been added to give you explicit control over whether or not audio data is read or written in big- or little-endian byte +order: + + drwav_read_pcm_frames_le() + drwav_read_pcm_frames_be() + drwav_read_pcm_frames_s16le() + drwav_read_pcm_frames_s16be() + drwav_read_pcm_frames_f32le() + drwav_read_pcm_frames_f32be() + drwav_read_pcm_frames_s32le() + drwav_read_pcm_frames_s32be() + drwav_write_pcm_frames_le() + drwav_write_pcm_frames_be() + +Removed APIs +------------ +The following APIs were deprecated in version 0.10.0 and have now been removed: + + drwav_open() + drwav_open_ex() + drwav_open_write() + drwav_open_write_sequential() + drwav_open_file() + drwav_open_file_ex() + drwav_open_file_write() + drwav_open_file_write_sequential() + drwav_open_memory() + drwav_open_memory_ex() + drwav_open_memory_write() + drwav_open_memory_write_sequential() + drwav_close() + + + +RELEASE NOTES - v0.10.0 +======================= +Version 0.10.0 has breaking API changes. There are no significant bug fixes in this release, so if you are affected you do +not need to upgrade. + +Removed APIs +------------ +The following APIs were deprecated in version 0.9.0 and have been completely removed in version 0.10.0: + + drwav_read() + drwav_read_s16() + drwav_read_f32() + drwav_read_s32() + drwav_seek_to_sample() + drwav_write() + drwav_open_and_read_s16() + drwav_open_and_read_f32() + drwav_open_and_read_s32() + drwav_open_file_and_read_s16() + drwav_open_file_and_read_f32() + drwav_open_file_and_read_s32() + drwav_open_memory_and_read_s16() + drwav_open_memory_and_read_f32() + drwav_open_memory_and_read_s32() + drwav::totalSampleCount + +See release notes for version 0.9.0 at the bottom of this file for replacement APIs. + +Deprecated APIs +--------------- +The following APIs have been deprecated. There is a confusing and completely arbitrary difference between drwav_init*() and +drwav_open*(), where drwav_init*() initializes a pre-allocated drwav object, whereas drwav_open*() will first allocated a +drwav object on the heap and then initialize it. drwav_open*() has been deprecated which means you must now use a pre- +allocated drwav object with drwav_init*(). If you need the previous functionality, you can just do a malloc() followed by +a called to one of the drwav_init*() APIs. + + drwav_open() + drwav_open_ex() + drwav_open_write() + drwav_open_write_sequential() + drwav_open_file() + drwav_open_file_ex() + drwav_open_file_write() + drwav_open_file_write_sequential() + drwav_open_memory() + drwav_open_memory_ex() + drwav_open_memory_write() + drwav_open_memory_write_sequential() + drwav_close() + +These APIs will be removed completely in a future version. The rationale for this change is to remove confusion between the +two different ways to initialize a drwav object. +*/ + +/* +REVISION HISTORY +================ +v0.12.16 - 2020-12-02 + - Fix a bug when trying to read more bytes than can fit in a size_t. + +v0.12.15 - 2020-11-21 + - Fix compilation with OpenWatcom. + +v0.12.14 - 2020-11-13 + - Minor code clean up. + +v0.12.13 - 2020-11-01 + - Improve compiler support for older versions of GCC. + +v0.12.12 - 2020-09-28 + - Add support for RF64. + - Fix a bug in writing mode where the size of the RIFF chunk incorrectly includes the header section. + +v0.12.11 - 2020-09-08 + - Fix a compilation error on older compilers. + +v0.12.10 - 2020-08-24 + - Fix a bug when seeking with ADPCM formats. + +v0.12.9 - 2020-08-02 + - Simplify sized types. + +v0.12.8 - 2020-07-25 + - Fix a compilation warning. + +v0.12.7 - 2020-07-15 + - Fix some bugs on big-endian architectures. + - Fix an error in s24 to f32 conversion. + +v0.12.6 - 2020-06-23 + - Change drwav_read_*() to allow NULL to be passed in as the output buffer which is equivalent to a forward seek. + - Fix a buffer overflow when trying to decode invalid IMA-ADPCM files. + - Add include guard for the implementation section. + +v0.12.5 - 2020-05-27 + - Minor documentation fix. + +v0.12.4 - 2020-05-16 + - Replace assert() with DRWAV_ASSERT(). + - Add compile-time and run-time version querying. + - DRWAV_VERSION_MINOR + - DRWAV_VERSION_MAJOR + - DRWAV_VERSION_REVISION + - DRWAV_VERSION_STRING + - drwav_version() + - drwav_version_string() + +v0.12.3 - 2020-04-30 + - Fix compilation errors with VC6. + +v0.12.2 - 2020-04-21 + - Fix a bug where drwav_init_file() does not close the file handle after attempting to load an erroneous file. + +v0.12.1 - 2020-04-13 + - Fix some pedantic warnings. + +v0.12.0 - 2020-04-04 + - API CHANGE: Add container and format parameters to the chunk callback. + - Minor documentation updates. + +v0.11.5 - 2020-03-07 + - Fix compilation error with Visual Studio .NET 2003. + +v0.11.4 - 2020-01-29 + - Fix some static analysis warnings. + - Fix a bug when reading f32 samples from an A-law encoded stream. + +v0.11.3 - 2020-01-12 + - Minor changes to some f32 format conversion routines. + - Minor bug fix for ADPCM conversion when end of file is reached. + +v0.11.2 - 2019-12-02 + - Fix a possible crash when using custom memory allocators without a custom realloc() implementation. + - Fix an integer overflow bug. + - Fix a null pointer dereference bug. + - Add limits to sample rate, channels and bits per sample to tighten up some validation. + +v0.11.1 - 2019-10-07 + - Internal code clean up. + +v0.11.0 - 2019-10-06 + - API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation + routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs: + - drwav_init() + - drwav_init_ex() + - drwav_init_file() + - drwav_init_file_ex() + - drwav_init_file_w() + - drwav_init_file_w_ex() + - drwav_init_memory() + - drwav_init_memory_ex() + - drwav_init_write() + - drwav_init_write_sequential() + - drwav_init_write_sequential_pcm_frames() + - drwav_init_file_write() + - drwav_init_file_write_sequential() + - drwav_init_file_write_sequential_pcm_frames() + - drwav_init_file_write_w() + - drwav_init_file_write_sequential_w() + - drwav_init_file_write_sequential_pcm_frames_w() + - drwav_init_memory_write() + - drwav_init_memory_write_sequential() + - drwav_init_memory_write_sequential_pcm_frames() + - drwav_open_and_read_pcm_frames_s16() + - drwav_open_and_read_pcm_frames_f32() + - drwav_open_and_read_pcm_frames_s32() + - drwav_open_file_and_read_pcm_frames_s16() + - drwav_open_file_and_read_pcm_frames_f32() + - drwav_open_file_and_read_pcm_frames_s32() + - drwav_open_file_and_read_pcm_frames_s16_w() + - drwav_open_file_and_read_pcm_frames_f32_w() + - drwav_open_file_and_read_pcm_frames_s32_w() + - drwav_open_memory_and_read_pcm_frames_s16() + - drwav_open_memory_and_read_pcm_frames_f32() + - drwav_open_memory_and_read_pcm_frames_s32() + Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use + DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE. + - Add support for reading and writing PCM frames in an explicit endianness. New APIs: + - drwav_read_pcm_frames_le() + - drwav_read_pcm_frames_be() + - drwav_read_pcm_frames_s16le() + - drwav_read_pcm_frames_s16be() + - drwav_read_pcm_frames_f32le() + - drwav_read_pcm_frames_f32be() + - drwav_read_pcm_frames_s32le() + - drwav_read_pcm_frames_s32be() + - drwav_write_pcm_frames_le() + - drwav_write_pcm_frames_be() + - Remove deprecated APIs. + - API CHANGE: The following APIs now return native-endian data. Previously they returned little-endian data. + - drwav_read_pcm_frames() + - drwav_read_pcm_frames_s16() + - drwav_read_pcm_frames_s32() + - drwav_read_pcm_frames_f32() + - drwav_open_and_read_pcm_frames_s16() + - drwav_open_and_read_pcm_frames_s32() + - drwav_open_and_read_pcm_frames_f32() + - drwav_open_file_and_read_pcm_frames_s16() + - drwav_open_file_and_read_pcm_frames_s32() + - drwav_open_file_and_read_pcm_frames_f32() + - drwav_open_file_and_read_pcm_frames_s16_w() + - drwav_open_file_and_read_pcm_frames_s32_w() + - drwav_open_file_and_read_pcm_frames_f32_w() + - drwav_open_memory_and_read_pcm_frames_s16() + - drwav_open_memory_and_read_pcm_frames_s32() + - drwav_open_memory_and_read_pcm_frames_f32() + +v0.10.1 - 2019-08-31 + - Correctly handle partial trailing ADPCM blocks. + +v0.10.0 - 2019-08-04 + - Remove deprecated APIs. + - Add wchar_t variants for file loading APIs: + drwav_init_file_w() + drwav_init_file_ex_w() + drwav_init_file_write_w() + drwav_init_file_write_sequential_w() + - Add drwav_target_write_size_bytes() which calculates the total size in bytes of a WAV file given a format and sample count. + - Add APIs for specifying the PCM frame count instead of the sample count when opening in sequential write mode: + drwav_init_write_sequential_pcm_frames() + drwav_init_file_write_sequential_pcm_frames() + drwav_init_file_write_sequential_pcm_frames_w() + drwav_init_memory_write_sequential_pcm_frames() + - Deprecate drwav_open*() and drwav_close(): + drwav_open() + drwav_open_ex() + drwav_open_write() + drwav_open_write_sequential() + drwav_open_file() + drwav_open_file_ex() + drwav_open_file_write() + drwav_open_file_write_sequential() + drwav_open_memory() + drwav_open_memory_ex() + drwav_open_memory_write() + drwav_open_memory_write_sequential() + drwav_close() + - Minor documentation updates. + +v0.9.2 - 2019-05-21 + - Fix warnings. + +v0.9.1 - 2019-05-05 + - Add support for C89. + - Change license to choice of public domain or MIT-0. + +v0.9.0 - 2018-12-16 + - API CHANGE: Add new reading APIs for reading by PCM frames instead of samples. Old APIs have been deprecated and + will be removed in v0.10.0. Deprecated APIs and their replacements: + drwav_read() -> drwav_read_pcm_frames() + drwav_read_s16() -> drwav_read_pcm_frames_s16() + drwav_read_f32() -> drwav_read_pcm_frames_f32() + drwav_read_s32() -> drwav_read_pcm_frames_s32() + drwav_seek_to_sample() -> drwav_seek_to_pcm_frame() + drwav_write() -> drwav_write_pcm_frames() + drwav_open_and_read_s16() -> drwav_open_and_read_pcm_frames_s16() + drwav_open_and_read_f32() -> drwav_open_and_read_pcm_frames_f32() + drwav_open_and_read_s32() -> drwav_open_and_read_pcm_frames_s32() + drwav_open_file_and_read_s16() -> drwav_open_file_and_read_pcm_frames_s16() + drwav_open_file_and_read_f32() -> drwav_open_file_and_read_pcm_frames_f32() + drwav_open_file_and_read_s32() -> drwav_open_file_and_read_pcm_frames_s32() + drwav_open_memory_and_read_s16() -> drwav_open_memory_and_read_pcm_frames_s16() + drwav_open_memory_and_read_f32() -> drwav_open_memory_and_read_pcm_frames_f32() + drwav_open_memory_and_read_s32() -> drwav_open_memory_and_read_pcm_frames_s32() + drwav::totalSampleCount -> drwav::totalPCMFrameCount + - API CHANGE: Rename drwav_open_and_read_file_*() to drwav_open_file_and_read_*(). + - API CHANGE: Rename drwav_open_and_read_memory_*() to drwav_open_memory_and_read_*(). + - Add built-in support for smpl chunks. + - Add support for firing a callback for each chunk in the file at initialization time. + - This is enabled through the drwav_init_ex(), etc. family of APIs. + - Handle invalid FMT chunks more robustly. + +v0.8.5 - 2018-09-11 + - Const correctness. + - Fix a potential stack overflow. + +v0.8.4 - 2018-08-07 + - Improve 64-bit detection. + +v0.8.3 - 2018-08-05 + - Fix C++ build on older versions of GCC. + +v0.8.2 - 2018-08-02 + - Fix some big-endian bugs. + +v0.8.1 - 2018-06-29 + - Add support for sequential writing APIs. + - Disable seeking in write mode. + - Fix bugs with Wave64. + - Fix typos. + +v0.8 - 2018-04-27 + - Bug fix. + - Start using major.minor.revision versioning. + +v0.7f - 2018-02-05 + - Restrict ADPCM formats to a maximum of 2 channels. + +v0.7e - 2018-02-02 + - Fix a crash. + +v0.7d - 2018-02-01 + - Fix a crash. + +v0.7c - 2018-02-01 + - Set drwav.bytesPerSample to 0 for all compressed formats. + - Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for + all format conversion reading APIs (*_s16, *_s32, *_f32 APIs). + - Fix some divide-by-zero errors. + +v0.7b - 2018-01-22 + - Fix errors with seeking of compressed formats. + - Fix compilation error when DR_WAV_NO_CONVERSION_API + +v0.7a - 2017-11-17 + - Fix some GCC warnings. + +v0.7 - 2017-11-04 + - Add writing APIs. + +v0.6 - 2017-08-16 + - API CHANGE: Rename dr_* types to drwav_*. + - Add support for custom implementations of malloc(), realloc(), etc. + - Add support for Microsoft ADPCM. + - Add support for IMA ADPCM (DVI, format code 0x11). + - Optimizations to drwav_read_s16(). + - Bug fixes. + +v0.5g - 2017-07-16 + - Change underlying type for booleans to unsigned. + +v0.5f - 2017-04-04 + - Fix a minor bug with drwav_open_and_read_s16() and family. + +v0.5e - 2016-12-29 + - Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this. + - Minor fixes to documentation. + +v0.5d - 2016-12-28 + - Use drwav_int* and drwav_uint* sized types to improve compiler support. + +v0.5c - 2016-11-11 + - Properly handle JUNK chunks that come before the FMT chunk. + +v0.5b - 2016-10-23 + - A minor change to drwav_bool8 and drwav_bool32 types. + +v0.5a - 2016-10-11 + - Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering. + - Improve A-law and mu-law efficiency. + +v0.5 - 2016-09-29 + - API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to + keep it consistent with dr_audio and dr_flac. + +v0.4b - 2016-09-18 + - Fixed a typo in documentation. + +v0.4a - 2016-09-18 + - Fixed a typo. + - Change date format to ISO 8601 (YYYY-MM-DD) + +v0.4 - 2016-07-13 + - API CHANGE. Make onSeek consistent with dr_flac. + - API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac. + - Added support for Sony Wave64. + +v0.3a - 2016-05-28 + - API CHANGE. Return drwav_bool32 instead of int in onSeek callback. + - Fixed a memory leak. + +v0.3 - 2016-05-22 + - Lots of API changes for consistency. + +v0.2a - 2016-05-16 + - Fixed Linux/GCC build. + +v0.2 - 2016-05-11 + - Added support for reading data as signed 32-bit PCM for consistency with dr_flac. + +v0.1a - 2016-05-07 + - Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize. + +v0.1 - 2016-05-04 + - Initial versioned release. +*/ + +/* +This software is available as a choice of the following licenses. Choose +whichever you prefer. + +=============================================================================== +ALTERNATIVE 1 - Public Domain (www.unlicense.org) +=============================================================================== +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, +commercial or non-commercial, and by any means. + +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to +this software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to + +=============================================================================== +ALTERNATIVE 2 - MIT No Attribution +=============================================================================== +Copyright 2020 David Reid + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ diff --git a/ggml.c b/ggml.c new file mode 100644 index 00000000000..c29422cef8e --- /dev/null +++ b/ggml.c @@ -0,0 +1,6689 @@ +#include "ggml.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#define GGML_DEBUG 0 +#define GGML_MEM_ALIGN 16 + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#define MIN(a, b) ((a) < (b) ? (a) : (b)) + +#define UNUSED(x) (void)(x) +#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) + +#define GGML_ASSERT(x) assert(x) + +#ifdef GGML_USE_ACCELERATE +#include +#endif + +// floating point type used to accumulate sums +typedef double ggml_float; + +// 16-bit float +// on Arm, we use __fp16 +// on x86, we use uint16_t +#ifdef __ARM_NEON + +// if YCM cannot find , make a symbolic link to it, for example: +// +// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ +// +#include + +float ggml_fp16_to_fp32(ggml_fp16_t x) { + return x; +} + +ggml_fp16_t ggml_fp32_to_fp16(float x) { + return x; +} + +#else + +#include + +static inline float fp32_from_bits(uint32_t w) { + union { + uint32_t as_bits; + float as_value; + } fp32 = { w }; + return fp32.as_value; +} + +static inline uint32_t fp32_to_bits(float f) { + union { + float as_value; + uint32_t as_bits; + } fp32 = { f }; + return fp32.as_bits; +} + +float ggml_fp16_to_fp32(ggml_fp16_t h) { + const uint32_t w = (uint32_t) h << 16; + const uint32_t sign = w & UINT32_C(0x80000000); + const uint32_t two_w = w + w; + + const uint32_t exp_offset = UINT32_C(0xE0) << 23; +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float exp_scale = 0x1.0p-112f; +#else + const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); +#endif + const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; + + const uint32_t magic_mask = UINT32_C(126) << 23; + const float magic_bias = 0.5f; + const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; + + const uint32_t denormalized_cutoff = UINT32_C(1) << 27; + const uint32_t result = sign | + (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); + return fp32_from_bits(result); +} + +ggml_fp16_t ggml_fp32_to_fp16(float f) { +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float scale_to_inf = 0x1.0p+112f; + const float scale_to_zero = 0x1.0p-110f; +#else + const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); + const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); +#endif + float base = (fabsf(f) * scale_to_inf) * scale_to_zero; + + const uint32_t w = fp32_to_bits(f); + const uint32_t shl1_w = w + w; + const uint32_t sign = w & UINT32_C(0x80000000); + uint32_t bias = shl1_w & UINT32_C(0xFF000000); + if (bias < UINT32_C(0x71000000)) { + bias = UINT32_C(0x71000000); + } + + base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; + const uint32_t bits = fp32_to_bits(base); + const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); + const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); + const uint32_t nonsign = exp_bits + mantissa_bits; + return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); +} +#endif + +// +// timing +// + +int64_t ggml_time_ms(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; +} + +int64_t ggml_time_us(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; +} + +int64_t ggml_cycles(void) { + return clock(); +} + +int64_t ggml_cycles_per_ms(void) { + return CLOCKS_PER_SEC/1000; +} + +#ifdef GGML_PERF +#define ggml_perf_time_ms() ggml_time_ms() +#define ggml_perf_time_us() ggml_time_us() +#define ggml_perf_cycles() ggml_cycles() +#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms() +#else +#define ggml_perf_time_ms() 0 +#define ggml_perf_time_us() 0 +#define ggml_perf_cycles() 0 +#define ggml_perf_cycles_per_ms() 0 +#endif + +// +// cache line +// + +#if defined(__cpp_lib_hardware_interference_size) + const size_t CACHE_LINE_SIZE = hardware_destructive_interference_size; +#else + const size_t CACHE_LINE_SIZE = 64; +#endif + +const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); + +// +// fundamental operations +// + +inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } +inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } +inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; } +inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; } +inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; } +inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } +inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; } +inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } +inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } + +inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { + ggml_float sumf = 0.0; +#ifdef __ARM_NEON + // NEON 128-bit + const int n16 = (n & ~15); + + float32x4_t sum0 = vdupq_n_f32(0); + float32x4_t sum1 = vdupq_n_f32(0); + float32x4_t sum2 = vdupq_n_f32(0); + float32x4_t sum3 = vdupq_n_f32(0); + + float32x4_t x0, x1, x2, x3; + float32x4_t y0, y1, y2, y3; + + for (int i = 0; i < n16; i += 16) { + x0 = vld1q_f32(x + i + 0); + x1 = vld1q_f32(x + i + 4); + x2 = vld1q_f32(x + i + 8); + x3 = vld1q_f32(x + i + 12); + + y0 = vld1q_f32(y + i + 0); + y1 = vld1q_f32(y + i + 4); + y2 = vld1q_f32(y + i + 8); + y3 = vld1q_f32(y + i + 12); + + sum0 = vfmaq_f32(sum0, x0, y0); + sum1 = vfmaq_f32(sum1, x1, y1); + sum2 = vfmaq_f32(sum2, x2, y2); + sum3 = vfmaq_f32(sum3, x3, y3); + } + + // reduce sum0..sum3 to sum0 + sum0 = vaddq_f32(sum0, sum1); + sum2 = vaddq_f32(sum2, sum3); + sum0 = vaddq_f32(sum0, sum2); + + float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0), vget_high_f32(sum0)); + sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1); + + // leftovers + for (int i = n16; i < n; ++i) { + sumf += x[i]*y[i]; + } +#elif defined(__AVX2__) + // AVX 256-bit (unroll 4) + const int n32 = (n & ~31); + + __m256 sum0 = _mm256_setzero_ps(); + __m256 sum1 = _mm256_setzero_ps(); + __m256 sum2 = _mm256_setzero_ps(); + __m256 sum3 = _mm256_setzero_ps(); + + __m256 x0, x1, x2, x3; + __m256 y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + x0 = _mm256_loadu_ps(x + i + 0); + x1 = _mm256_loadu_ps(x + i + 8); + x2 = _mm256_loadu_ps(x + i + 16); + x3 = _mm256_loadu_ps(x + i + 24); + + y0 = _mm256_loadu_ps(y + i + 0); + y1 = _mm256_loadu_ps(y + i + 8); + y2 = _mm256_loadu_ps(y + i + 16); + y3 = _mm256_loadu_ps(y + i + 24); + + sum0 = _mm256_fmadd_ps(x0, y0, sum0); + sum1 = _mm256_fmadd_ps(x1, y1, sum1); + sum2 = _mm256_fmadd_ps(x2, y2, sum2); + sum3 = _mm256_fmadd_ps(x3, y3, sum3); + } + + sum0 = _mm256_add_ps(sum0, sum1); + sum2 = _mm256_add_ps(sum2, sum3); + sum0 = _mm256_add_ps(sum0, sum2); + + const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0), _mm256_extractf128_ps(sum0, 1)); + const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); + + sumf = _mm_cvtss_f32(r1); + + // leftovers + for (int i = n32; i < n; ++i) { + sumf += x[i]*y[i]; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + sumf += x[i]*y[i]; + } +#endif + + *s = sumf; +} + +inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { + ggml_float sumf = 0.0; +#ifdef __ARM_NEON + const int n32 = (n & ~31); + + float16x8_t sum0 = vdupq_n_f16(0); + float16x8_t sum1 = vdupq_n_f16(0); + float16x8_t sum2 = vdupq_n_f16(0); + float16x8_t sum3 = vdupq_n_f16(0); + + float16x8_t x0, x1, x2, x3; + float16x8_t y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + x0 = vld1q_f16(x + i + 0 ); + x1 = vld1q_f16(x + i + 8 ); + x2 = vld1q_f16(x + i + 16); + x3 = vld1q_f16(x + i + 24); + + y0 = vld1q_f16(y + i + 0 ); + y1 = vld1q_f16(y + i + 8 ); + y2 = vld1q_f16(y + i + 16); + y3 = vld1q_f16(y + i + 24); + + sum0 = vfmaq_f16(sum0, x0, y0); + sum1 = vfmaq_f16(sum1, x1, y1); + sum2 = vfmaq_f16(sum2, x2, y2); + sum3 = vfmaq_f16(sum3, x3, y3); + } + + // reduce sum0..sum3 to sum0 + sum0 = vaddq_f16(sum0, sum1); + sum2 = vaddq_f16(sum2, sum3); + sum0 = vaddq_f16(sum0, sum2); + + // load sum0 into 2 float32x4_t + float32x4_t sum0f32 = vcvt_f32_f16(vget_low_f16(sum0)); + float32x4_t sum1f32 = vcvt_f32_f16(vget_high_f16(sum0)); + + // reduce sum0f32 and sum1f32 to sumf + sum0f32 = vaddq_f32(sum0f32, sum1f32); + + float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0f32), vget_high_f32(sum0f32)); + sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1); + + // leftovers + for (int i = n32; i < n; ++i) { + GGML_ASSERT(false); // should not end up here + sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); + } +#elif defined(__AVX2__) + // AVX 256-bit (unroll 4) + const int n32 = (n & ~31); + + __m256 sum0 = _mm256_setzero_ps(); + __m256 sum1 = _mm256_setzero_ps(); + __m256 sum2 = _mm256_setzero_ps(); + __m256 sum3 = _mm256_setzero_ps(); + + __m256 x0, x1, x2, x3; + __m256 y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); + x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); + x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); + x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); + + y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); + y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); + y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); + y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); + + sum0 = _mm256_fmadd_ps(x0, y0, sum0); + sum1 = _mm256_fmadd_ps(x1, y1, sum1); + sum2 = _mm256_fmadd_ps(x2, y2, sum2); + sum3 = _mm256_fmadd_ps(x3, y3, sum3); + } + + const __m256 sum01 = _mm256_add_ps(sum0, sum1); + const __m256 sum23 = _mm256_add_ps(sum2, sum3); + const __m256 sum0123 = _mm256_add_ps(sum01, sum23); + + const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0123), _mm256_extractf128_ps(sum0123, 1)); + const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); + + sumf = _mm_cvtss_f32(r1); + + // leftovers + for (int i = n32; i < n; ++i) { + GGML_ASSERT(false); + sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); + } +#else + for (int i = 0; i < n; ++i) { + sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); + } +#endif + + *s = sumf; +} + +inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) { +#ifdef __ARM_NEON + // NEON 128-bit + const int n16 = (n & ~15); + + const float32x4_t v4 = vdupq_n_f32(v); + + float32x4_t x0, x1, x2, x3; + float32x4_t y0, y1, y2, y3; + + for (int i = 0; i < n16; i += 16) { + x0 = vld1q_f32(x + i + 0); + x1 = vld1q_f32(x + i + 4); + x2 = vld1q_f32(x + i + 8); + x3 = vld1q_f32(x + i + 12); + + y0 = vld1q_f32(y + i + 0); + y1 = vld1q_f32(y + i + 4); + y2 = vld1q_f32(y + i + 8); + y3 = vld1q_f32(y + i + 12); + + y0 = vfmaq_f32(y0, x0, v4); + y1 = vfmaq_f32(y1, x1, v4); + y2 = vfmaq_f32(y2, x2, v4); + y3 = vfmaq_f32(y3, x3, v4); + + vst1q_f32(y + i + 0, y0); + vst1q_f32(y + i + 4, y1); + vst1q_f32(y + i + 8, y2); + vst1q_f32(y + i + 12, y3); + } + + // leftovers + for (int i = n16; i < n; ++i) { + y[i] += x[i]*v; + } +#elif defined(__AVX2__) + // AVX 256-bit (unroll 4) + const int n32 = (n & ~31); + + const __m256 v4 = _mm256_set1_ps(v); + + __m256 x0, x1, x2, x3; + __m256 y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + x0 = _mm256_loadu_ps(x + i + 0); + x1 = _mm256_loadu_ps(x + i + 8); + x2 = _mm256_loadu_ps(x + i + 16); + x3 = _mm256_loadu_ps(x + i + 24); + + y0 = _mm256_loadu_ps(y + i + 0); + y1 = _mm256_loadu_ps(y + i + 8); + y2 = _mm256_loadu_ps(y + i + 16); + y3 = _mm256_loadu_ps(y + i + 24); + + y0 = _mm256_fmadd_ps(x0, v4, y0); + y1 = _mm256_fmadd_ps(x1, v4, y1); + y2 = _mm256_fmadd_ps(x2, v4, y2); + y3 = _mm256_fmadd_ps(x3, v4, y3); + + _mm256_storeu_ps(y + i + 0, y0); + _mm256_storeu_ps(y + i + 8, y1); + _mm256_storeu_ps(y + i + 16, y2); + _mm256_storeu_ps(y + i + 24, y3); + } + + // leftovers + for (int i = n32; i < n; ++i) { + y[i] += x[i]*v; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] += x[i]*v; + } +#endif +} + +inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) { +#ifdef __ARM_NEON + // NEON 128-bit + const int n32 = (n & ~31); + + const float16x8_t v8 = vdupq_n_f16(v); + + float16x8_t x0, x1, x2, x3; + float16x8_t y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + y0 = vld1q_f16(y + i + 0 ); + y1 = vld1q_f16(y + i + 8 ); + y2 = vld1q_f16(y + i + 16); + y3 = vld1q_f16(y + i + 24); + + x0 = vld1q_f16(x + i + 0 ); + x1 = vld1q_f16(x + i + 8 ); + x2 = vld1q_f16(x + i + 16); + x3 = vld1q_f16(x + i + 24); + + y0 = vfmaq_f16(y0, x0, v8); + y1 = vfmaq_f16(y1, x1, v8); + y2 = vfmaq_f16(y2, x2, v8); + y3 = vfmaq_f16(y3, x3, v8); + + vst1q_f16(y + i + 0 , y0); + vst1q_f16(y + i + 8 , y1); + vst1q_f16(y + i + 16, y2); + vst1q_f16(y + i + 24, y3); + } + + // leftovers + for (int i = n32; i < n; ++i) { + GGML_ASSERT(false); + y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); + } +#elif defined(__AVX2__) + // AVX 256-bit + const int n32 = (n & ~31); + + const __m256 v8 = _mm256_set1_ps(v); + + __m256 x0, x1, x2, x3; + __m256 y0, y1, y2, y3; + + for (int i = 0; i < n32; i += 32) { + y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); + y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); + y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); + y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); + + x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); + x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); + x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); + x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); + + y0 = _mm256_fmadd_ps(x0, v8, y0); + y1 = _mm256_fmadd_ps(x1, v8, y1); + y2 = _mm256_fmadd_ps(x2, v8, y2); + y3 = _mm256_fmadd_ps(x3, v8, y3); + + _mm_storeu_si128((__m128i*)(y + i + 0 ), _mm256_cvtps_ph(y0, 0)); + _mm_storeu_si128((__m128i*)(y + i + 8 ), _mm256_cvtps_ph(y1, 0)); + _mm_storeu_si128((__m128i*)(y + i + 16), _mm256_cvtps_ph(y2, 0)); + _mm_storeu_si128((__m128i*)(y + i + 24), _mm256_cvtps_ph(y3, 0)); + } + + // leftovers + for (int i = n32; i < n; ++i) { + GGML_ASSERT(false); + y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); + } +#else + for (int i = 0; i < n; ++i) { + y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); + } +#endif +} + +inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } +inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); } +inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } +inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); } +inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } +inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } +inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } +inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } + +const ggml_float GELU_COEF_A = 0.044715; +const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876; + +inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i]))); + //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3)))) + const ggml_float xx = x[i]; + y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx))); + } +} + +inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; } +inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); } + +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + +// +// data types +// + +const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { + sizeof(int8_t ), + sizeof(int16_t), + sizeof(int32_t), + sizeof(ggml_fp16_t), + sizeof(float ), +}; + +const char * GGML_OP_LABEL[GGML_OP_COUNT] = { + "NONE", + + "DUP", + "ADD", + "SUB", + "MUL", + "DIV", + "SQR", + "SQRT", + "SUM", + "MEAN", + "REPEAT", + "ABS", + "SGN", + "NEG", + "STEP", + "RELU", + "GELU", + "NORM", + + "MUL_MAT", + + "SCALE", + "CPY", + "RESHAPE", + "VIEW", + "PERMUTE", + "TRANSPOSE", + "GET_ROWS", + "DIAG_MASK_INF", + "SOFT_MAX", + "ROPE", + "CONV_1D_1S", + "CONV_1D_2S", +}; + +const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { + "none", + + "x", + "x+y", + "x-y", + "x*y", + "x/y", + "x^2", + "√x", + "Σx", + "Σx/n", + "repeat(x)", + "abs(x)", + "sgn(x)", + "-x", + "step(x)", + "relu(x)", + "gelu(x)", + "norm(x)", + + "X*Y", + + "x*v", + "x-\\>y", + "reshape(x)", + "view(x)", + "permute(x)", + "transpose(x)", + "get_rows(x)", + "diag_mask_inf(x)", + "soft_max(x)", + "rope(x)", + "conv_1d_1s(x)", + "conv_1d_2s(x)", +}; + +// +// ggml object +// + +struct ggml_object { + size_t offset; + size_t size; + + struct ggml_object * next; + + char padding[8]; +}; + +const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); + +static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); +static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); + +// +// ggml context +// + +struct ggml_context { + size_t mem_size; + void * mem_buffer; + bool mem_buffer_owned; + + int n_objects; + + struct ggml_object * objects_begin; + struct ggml_object * objects_end; +}; + +struct ggml_context_container { + bool used; + + struct ggml_context context; +}; + +// +// compute types +// + +enum ggml_task_type { + GGML_TASK_INIT = 0, + GGML_TASK_COMPUTE, + GGML_TASK_FINALIZE, +}; + +struct ggml_compute_params { + enum ggml_task_type type; + + int ith, nth; + + // work buffer for all threads + size_t wsize; + void * wdata; +}; + +// +// ggml state +// + +struct ggml_state { + struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; +}; + +// global state +struct ggml_state g_state; + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_print_object(const struct ggml_object * obj) { + GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n", + obj->offset, obj->size, (const void *) obj->next); +} + +void ggml_print_objects(const struct ggml_context * ctx) { + struct ggml_object * obj = ctx->objects_begin; + + GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx); + + while (obj != NULL) { + ggml_print_object(obj); + obj = obj->next; + } + + GGML_PRINT("%s: --- end ---\n", __func__); +} + +int ggml_nelements(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +int ggml_nrows(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +size_t ggml_nbytes(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type]; +} + +size_t ggml_type_size(enum ggml_type type) { + return GGML_TYPE_SIZE[type]; +} + +size_t ggml_element_size(const struct ggml_tensor * tensor) { + return GGML_TYPE_SIZE[tensor->type]; +} + +bool ggml_is_scalar(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_is_vector(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_is_matrix(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[0] == t1->ne[0]) && + (t0->ne[2] == t1->ne[2]) && + (t0->ne[3] == t1->ne[3]); +} + +bool ggml_is_contiguous(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[1] == tensor->nb[0]*tensor->ne[0] && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2];; +} + +bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[0] == t1->ne[0] ) && + (t0->ne[1] == t1->ne[1] ) && + (t0->ne[2] == t1->ne[2] ) && + (t0->ne[3] == t1->ne[3] ); +} + +// check if t1 can be represented as a repeatition of t0 +bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t1->ne[0]%t0->ne[0] == 0) && + (t1->ne[1]%t0->ne[1] == 0) && + (t1->ne[2]%t0->ne[2] == 0) && + (t1->ne[3]%t0->ne[3] == 0); +} + +int ggml_up32(int n) { + return (n + 31) & ~31; +} + +int ggml_up64(int n) { + return (n + 63) & ~63; +} + +// assert that pointer is aligned to GGML_MEM_ALIGN +#define ggml_assert_aligned(ptr) \ + assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) + +//////////////////////////////////////////////////////////////////////////////// + +struct ggml_context * ggml_init(struct ggml_init_params params) { + // find non-used context in g_state + struct ggml_context * ctx = NULL; + + static bool first_time = true; + if (first_time) { + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + g_state.contexts[i].used = false; + } + first_time = false; + } + + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (!g_state.contexts[i].used) { + g_state.contexts[i].used = true; + ctx = &g_state.contexts[i].context; + + GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i); + break; + } + } + + if (ctx == NULL) { + GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found"); + return NULL; + } + + *ctx = (struct ggml_context) { + .mem_size = params.mem_size, + .mem_buffer = params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), + .mem_buffer_owned = params.mem_buffer ? false : true, + .n_objects = 0, + .objects_begin = NULL, + .objects_end = NULL, + }; + + ggml_assert_aligned(ctx->mem_buffer); + + return ctx; +} + +void ggml_free(struct ggml_context * ctx) { + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (&g_state.contexts[i].context == ctx) { + g_state.contexts[i].used = false; + + GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n", + i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size); + + if (ctx->mem_buffer_owned) { + free(ctx->mem_buffer); + } + + return; + } + } + + GGML_PRINT_DEBUG("%s: context not found\n", __func__); +} + +size_t ggml_used_mem(const struct ggml_context * ctx) { + return ctx->objects_end->offset + ctx->objects_end->size; +} + +//////////////////////////////////////////////////////////////////////////////// + +struct ggml_tensor * ggml_new_tensor_impl( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int* ne, + void* data) { + // always insert objects at the end of the context's memory pool + struct ggml_object * obj_cur = ctx->objects_end; + + const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset; + const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; + const size_t cur_end = cur_offset + cur_size; + + size_t size_needed = 0; + + if (data == NULL) { + size_needed += GGML_TYPE_SIZE[type]; + for (int i = 0; i < n_dims; i++) { + size_needed *= ne[i]; + } + // align to GGML_MEM_ALIGN + size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN; + + } + size_needed += sizeof(struct ggml_tensor); + + if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { + GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__); + assert(false); + return NULL; + } + + char * const mem_buffer = ctx->mem_buffer; + + struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); + + *obj_new = (struct ggml_object) { + .offset = cur_end + GGML_OBJECT_SIZE, + .size = size_needed, + .next = NULL, + }; + + if (obj_cur != NULL) { + obj_cur->next = obj_new; + } else { + // this is the first object in this context + ctx->objects_begin = obj_new; + } + + ctx->objects_end = obj_new; + + //GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end); + + struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset); + + ggml_assert_aligned(result); + + *result = (struct ggml_tensor) { + /*.type =*/ type, + /*.n_dims =*/ n_dims, + /*.ne =*/ { 1, 1, 1, 1 }, + /*.nb =*/ { 0, 0, 0, 0 }, + /*.op =*/ GGML_OP_NONE, + /*.is_param =*/ false, + /*.grad =*/ NULL, + /*.src0 =*/ NULL, + /*.src1 =*/ NULL, + /*.n_tasks =*/ 0, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + /*.data =*/ data == NULL ? (void *)(result + 1) : data, + /*.pad =*/ { 0 }, + }; + + ggml_assert_aligned(result->data); + + for (int i = 0; i < n_dims; i++) { + result->ne[i] = ne[i]; + } + + result->nb[0] = GGML_TYPE_SIZE[type]; + for (int i = 1; i < GGML_MAX_DIMS; i++) { + result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; + } + + ctx->n_objects++; + + return result; +} + +struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int* ne) { + return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); +} + +struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0) { + return ggml_new_tensor(ctx, type, 1, &ne0); +} + +struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1) { + const int ne[2] = { ne0, ne1 }; + return ggml_new_tensor(ctx, type, 2, ne); +} + +struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1, + int ne2) { + const int ne[3] = { ne0, ne1, ne2 }; + return ggml_new_tensor(ctx, type, 3, ne); +} + +struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1, + int ne2, + int ne3) { + const int ne[4] = { ne0, ne1, ne2, ne3 }; + return ggml_new_tensor(ctx, type, 4, ne); +} + +struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); + + ggml_set_f32(result, value); + + return result; +} + +struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { + return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL); +} + +struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { + memset(tensor->data, 0, ggml_nbytes(tensor)); + return tensor; +} + +struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { + const int n = ggml_nrows(tensor); + const int nc = tensor->ne[0]; + const size_t n1 = tensor->nb[1]; + + char * const data = tensor->data; + + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f32(nc, (float *)(data + i*n1), value); + } + } break; + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } + + return tensor; +} + +float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + return ((int8_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + return ((int16_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + return ((int32_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]); + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } break; + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } + + assert(false); + return 0.0f; +} + +void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + ((int8_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + ((int16_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + ((int32_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value); + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + ((float *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +void * ggml_get_data(const struct ggml_tensor * tensor) { + return tensor->data; +} + +float * ggml_get_data_f32(const struct ggml_tensor * tensor) { + assert(tensor->type == GGML_TYPE_F32); + return (float *)(tensor->data); +} + +struct ggml_tensor * ggml_view_tensor( + struct ggml_context * ctx, + const struct ggml_tensor * src) { + return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); +} + +//////////////////////////////////////////////////////////////////////////////// + +// ggml_dup + +struct ggml_tensor * ggml_dup_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DUP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_dup_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, true); +} + +// ggml_add + +struct ggml_tensor * ggml_add_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_add_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, true); +} + +// ggml_sub + +struct ggml_tensor * ggml_sub_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SUB; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_sub_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, true); +} + +// ggml_mul + +struct ggml_tensor * ggml_mul_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + if (inplace) { + assert(is_node == false); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MUL; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_mul_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, true); +} + +// ggml_div + +struct ggml_tensor * ggml_div_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + if (inplace) { + assert(is_node == false); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DIV; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_div_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, true); +} + +// ggml_sqr + +struct ggml_tensor * ggml_sqr_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQR; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqr_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, true); +} + +// ggml_sqrt + +struct ggml_tensor * ggml_sqrt_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQRT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqrt_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, true); +} + +// ggml_sum + +struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); + + result->op = GGML_OP_SUM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_mean + +struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement + is_node = true; + } + + int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne); + + result->op = GGML_OP_MEAN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_repeat + +struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_can_repeat(a, b)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (ggml_are_same_shape(a, b) && !is_node) { + return a; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne); + + result->op = GGML_OP_REPEAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_abs + +struct ggml_tensor * ggml_abs_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ABS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_abs_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_abs_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_abs_impl(ctx, a, true); +} + + +// ggml_sgn + +struct ggml_tensor * ggml_sgn_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SGN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sgn_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sgn_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sgn_impl(ctx, a, true); +} + +// ggml_neg + +struct ggml_tensor * ggml_neg_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_NEG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_neg_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_neg_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_neg_impl(ctx, a, true); +} + +// ggml_step + +struct ggml_tensor * ggml_step_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_STEP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_step_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_step_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_step_impl(ctx, a, true); +} + +// ggml_relu + +struct ggml_tensor * ggml_relu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_RELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_relu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_relu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_relu_impl(ctx, a, true); +} + +// ggml_gelu + +struct ggml_tensor * ggml_gelu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_GELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_gelu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_impl(ctx, a, true); +} + +// ggml_norm + +struct ggml_tensor * ggml_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + assert(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store epsilon here? + + return result; +} + +struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_norm_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_norm_impl(ctx, a, true); +} + +// ggml_mul_mat + +struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_can_mul_mat(a, b)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); + + result->op = GGML_OP_MUL_MAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_scale + +struct ggml_tensor * ggml_scale_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_is_scalar(b)); + assert(ggml_is_padded_1d(a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + assert(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + result->op = GGML_OP_SCALE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_scale_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_scale_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_scale_impl(ctx, a, b, true); +} + +// ggml_cpy + +struct ggml_tensor * ggml_cpy_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + assert(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + assert(false); // TODO: implement backward + is_node = true; + } + + // make a view of the destination + struct ggml_tensor * result = ggml_view_tensor(ctx, b); + + result->op = GGML_OP_CPY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_cpy_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_cpy_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_cpy_impl(ctx, a, b, true); +} + +// ggml_reshape + +struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_is_contiguous(a)); + assert(ggml_is_contiguous(b)); + assert(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (a->grad || b->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1) { + assert(ggml_is_contiguous(a)); + assert(ggml_nelements(a) == ne0*ne1); + + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + const int ne[2] = { ne0, ne1 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + int ne2) { + assert(ggml_is_contiguous(a)); + assert(ggml_nelements(a) == ne0*ne1*ne2); + + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + const int ne[3] = { ne0, ne1, ne2 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_view_1d + +struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + size_t offset) { + if (a->grad) { + assert(false); // gradient propagation is not supported + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset); + + result->op = GGML_OP_VIEW; + result->grad = NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store the offset here? + + return result; +} + +// ggml_view_2d + +struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + size_t nb1, + size_t offset) { + if (a->grad) { + assert(false); // gradient propagation is not supported + } + + const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = result->nb[1]*ne1; + result->nb[3] = result->nb[2]; + + result->op = GGML_OP_VIEW; + result->grad = NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store the offset here? + + return result; +} + +// ggml_permute + +struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3) { + assert(axis0 >= 0 && axis0 < GGML_MAX_DIMS); + assert(axis1 >= 0 && axis1 < GGML_MAX_DIMS); + assert(axis2 >= 0 && axis2 < GGML_MAX_DIMS); + assert(axis3 >= 0 && axis3 < GGML_MAX_DIMS); + + assert(axis0 != axis1); + assert(axis0 != axis2); + assert(axis0 != axis3); + assert(axis1 != axis2); + assert(axis1 != axis3); + assert(axis2 != axis3); + + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + int ne[GGML_MAX_DIMS]; + int nb[GGML_MAX_DIMS]; + + ne[axis0] = a->ne[0]; + ne[axis1] = a->ne[1]; + ne[axis2] = a->ne[2]; + ne[axis3] = a->ne[3]; + + nb[axis0] = a->nb[0]; + nb[axis1] = a->nb[1]; + nb[axis2] = a->nb[2]; + nb[axis3] = a->nb[3]; + + result->ne[0] = ne[0]; + result->ne[1] = ne[1]; + result->ne[2] = ne[2]; + result->ne[3] = ne[3]; + + result->nb[0] = nb[0]; + result->nb[1] = nb[1]; + result->nb[2] = nb[2]; + result->nb[3] = nb[3]; + + result->op = GGML_OP_PERMUTE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store the permutation here? + + return result; +} + +// ggml_transpose + +struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + result->ne[0] = a->ne[1]; + result->ne[1] = a->ne[0]; + + result->nb[0] = a->nb[1]; + result->nb[1] = a->nb[0]; + + result->op = GGML_OP_TRANSPOSE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_get_rows + +struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); + + bool is_node = false; + + if (a->grad || b->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + // TODO: implement non F32 return + //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); + struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]); + + result->op = GGML_OP_GET_ROWS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_diag_mask_inf + +struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); + ((int32_t *) b->data)[0] = n_past; + + result->op = GGML_OP_DIAG_MASK_INF; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_soft_max + +struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + result->op = GGML_OP_SOFT_MAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_rope + +struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode) { + assert(n_past >= 0); + bool is_node = false; + + if (a->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = n_dims; + ((int32_t *) b->data)[2] = mode; + + result->op = GGML_OP_ROPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_conv_1d_1s + +struct ggml_tensor * ggml_conv_1d_1s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_is_matrix(b)); + assert(a->ne[1] == b->ne[1]); + assert(a->ne[3] == 1); + bool is_node = false; + + if (a->grad || b->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + const int ne[4] = { b->ne[0], a->ne[2], 1, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + + result->op = GGML_OP_CONV_1D_1S; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_conv_1d_2s + +struct ggml_tensor * ggml_conv_1d_2s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + assert(ggml_is_matrix(b)); + assert(a->ne[1] == b->ne[1]); + assert(a->ne[3] == 1); + bool is_node = false; + + if (a->grad || b->grad) { + assert(false); // TODO: implement backward + is_node = true; + } + + const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + + result->op = GGML_OP_CONV_1D_2S; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor) { + tensor->is_param = true; + + assert(tensor->grad == NULL); + tensor->grad = ggml_dup_tensor(ctx, tensor); +} + +// ggml_compute_forward_dup + +void ggml_compute_forward_dup_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_is_contiguous(dst)); + assert(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + //const int ne00 = src0->ne[0]; + //const int ne01 = src0->ne[1]; + //const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + //const size_t nb00 = src0->nb[0]; + //const size_t nb01 = src0->nb[1]; + //const size_t nb02 = src0->nb[2]; + //const size_t nb03 = src0->nb[3]; + + if (ggml_is_contiguous(src0) && src0->type == dst->type) { + memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); + return; + } + + GGML_ASSERT(false); // TODO: implement +} + +void ggml_compute_forward_dup_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + if (ggml_is_contiguous(src0) && src0->type == dst->type) { + memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); + return; + } + + if (src0->nb[0] == sizeof(float)) { + if (dst->type == GGML_TYPE_F32) { + int id = 0; + const size_t rs = ne00*nb00; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + char * dst_ptr = (char *) dst->data + id*rs; + + memcpy(dst_ptr, src0_ptr, rs); + + id++; + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + int id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr); + id++; + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + int id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + int id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr); + id++; + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } +} + +void ggml_compute_forward_dup( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_dup_f16(params, src0, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_dup_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add + +void ggml_compute_forward_add_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int j = 0; j < n; j++) { + ggml_vec_add_f32(nc, + (float *) ((char *) dst->data + j*nb1), + (float *) ((char *) src0->data + j*nb01), + (float *) ((char *) src1->data + j*nb11)); + } + } else { + // src1 is not contiguous + for (int j = 0; j < n; j++) { + float * dst_ptr = (float *) ((char *) dst->data + j*nb1); + float * src0_ptr = (float *) ((char *) src0->data + j*nb01); + for (int i = 0; i < nc; i++) { + float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10); + + dst_ptr[i] = src0_ptr[i] + *src1_ptr; + } + } + } +} + +void ggml_compute_forward_add( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_add_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_sub + +void ggml_compute_forward_sub_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sub_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + +void ggml_compute_forward_sub( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sub_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_mul + +void ggml_compute_forward_mul_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_mul_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + +void ggml_compute_forward_mul( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mul_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_div + +void ggml_compute_forward_div_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_div_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + +void ggml_compute_forward_div( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_div_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_sqr + +void ggml_compute_forward_sqr_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqr_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_sqr( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqr_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_sqrt + +void ggml_compute_forward_sqrt_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqrt_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_sqrt( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqrt_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_sum + +void ggml_compute_forward_sum_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_is_scalar(dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(ggml_is_scalar(dst)); + assert(src0->nb[0] == sizeof(float)); + + *(float *) (dst->data) = 0.0f; + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_f32(ne00, + (float *) (dst->data), + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + } + } + } +} + +void ggml_compute_forward_sum( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sum_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_mean + +void ggml_compute_forward_mean_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; + + assert(ne0 == 1); + assert(ne1 == ne01); + assert(ne2 == ne02); + assert(ne3 == ne03); + + UNUSED(ne0); + UNUSED(ne1); + UNUSED(ne2); + UNUSED(ne3); + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) = 0.0f; + + ggml_vec_sum_f32(ne00, + (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + + *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; + } + } + } +} + +void ggml_compute_forward_mean( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mean_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_repeat + +void ggml_compute_forward_repeat_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: implement support for rank > 2 tensors + assert(src0->ne[2] == 1); + assert(src0->ne[3] == 1); + assert( dst->ne[2] == 1); + assert( dst->ne[3] == 1); + + const int nc = dst->ne[0]; + const int nr = dst->ne[1]; + const int nc0 = src0->ne[0]; + const int nr0 = src0->ne[1]; + const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat + const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat + + // TODO: support for transposed / permuted tensors + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + // TODO: maybe this is not optimal? + for (int i = 0; i < nrr; i++) { + for (int j = 0; j < ncr; j++) { + for (int k = 0; k < nr0; k++) { + ggml_vec_cpy_f32(nc0, + (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])), + (float *) ((char *) src0->data + ( k)*(src0->nb[1]))); + } + } + } +} + +void ggml_compute_forward_repeat( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_repeat_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_abs + +void ggml_compute_forward_abs_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_abs_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_abs( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_abs_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_sgn + +void ggml_compute_forward_sgn_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sgn_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_sgn( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sgn_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_neg + +void ggml_compute_forward_neg_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_neg_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_neg( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_neg_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_step + +void ggml_compute_forward_step_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_step_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_step( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_step_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_relu + +void ggml_compute_forward_relu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_relu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +void ggml_compute_forward_relu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_relu_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_gelu + +void ggml_compute_forward_gelu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_gelu_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +void ggml_compute_forward_gelu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gelu_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_norm + +void ggml_compute_forward_norm_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const ggml_float eps = 1e-5f; // TODO: make this a parameter + + // TODO: optimize + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + ggml_float mean = 0.0; + for (int i00 = 0; i00 < ne00; i00++) { + mean += x[i00]; + } + + mean /= ne00; + + float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + ggml_float sum2 = 0.0; + for (int i00 = 0; i00 < ne00; i00++) { + ggml_float v = x[i00] - mean; + y[i00] = v; + sum2 += v*v; + } + + const float scale = 1.0/sqrt(sum2/ne00 + eps); + + ggml_vec_scale_f32(ne00, y, scale); + } + } + } +} + +void ggml_compute_forward_norm( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_norm_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_mul_mat + +void ggml_compute_forward_mul_mat_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + const int ne12 = src1->ne[2]; + const int ne13 = src1->ne[3]; + + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; + const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + assert(ne02 == ne12); + assert(ne03 == ne13); + assert(ne2 == ne12); + assert(ne3 == ne13); + + // TODO: we don't support permuted src0 + assert(nb00 == sizeof(float) || nb01 == sizeof(float)); + + // dst cannot be transposed or permuted + assert(nb0 == sizeof(float)); + assert(nb0 <= nb1); + assert(nb1 <= nb2); + assert(nb2 <= nb3); + + assert(ne0 == ne01); + assert(ne1 == ne11); + assert(ne2 == ne02); + assert(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + // + // nb00 < nb01 - src0 is transposed + // compute by src0 columns + + if (params->type == GGML_TASK_INIT) { + if (nb01 >= nb00) { + return; + } + + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + if (nb01 >= nb00) { + return; + } + + // TODO: fix this memset (wsize is overestimated) + //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth); + + float * const wdata = params->wdata; + + // cols per thread + const int dc = (ne + nth - 1)/nth; + + // col range for this thread + const int ic0 = dc*ith; + const int ic1 = MIN(ic0 + dc, ne); + + ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0); + + for (int k = 1; k < nth; k++) { + ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0); + } + + return; + } + +//#ifdef GGML_USE_ACCELERATE +// // try to use BLAS +// +// if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) { +// if (params->ith != 0) return; +// printf("XXXXXXXX\n"); +// +// GGML_ASSERT(ggml_is_contiguous(src0)); +// GGML_ASSERT(ggml_is_contiguous(src1)); +// +// printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03); +// printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13); +// printf("ne0 = %d, ne1 = %d, ne2 = %d, ne3 = %d\n", ne0, ne1, ne2, ne3); +// +// printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03); +// printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13); +// printf("nb0 = %d, nb1 = %d, nb2 = %d, nb3 = %d\n", nb0, nb1, nb2, nb3); +// +// float * const wdata = params->wdata; +// +// int64_t tsum = 0.0; +// for (int i03 = 0; i03 < ne03; i03++) { +// for (int i02 = 0; i02 < ne02; i02++) { +// const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); +// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); +// float * z = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); +// +// // transpose src1 +// for (int j = 0; j < ne11; ++j) { +// for (int i = 0; i < ne10; ++i) { +// wdata[i*ne11 + j] = y[j*ne10 + i]; +// } +// } +// +// { +// const int64_t tt0 = ggml_time_us(); +// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, +// 1500, 1500, 64, +// 1.0, x, 64, +// wdata, 1500, +// 0.0, z, 1500); +// const int64_t tt1 = ggml_time_us(); +// tsum += tt1 - tt0; +// } +// +// // transpose z +// for (int j = 0; j < ne1; ++j) { +// for (int i = 0; i < ne0; ++i) { +// wdata[i*ne1 + j] = z[j*ne0 + i]; +// } +// } +// +// memcpy(z, wdata, ne0*ne1*sizeof(float)); +// +// //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, +// // ne0, ne1, 64, +// // 1.0f, +// // x, ne00, +// // y, ne11, +// // 0.0f, +// // z, 1500); +// } +// } +// printf("time = %f ms\n", tsum/1000.0); +// return; +// } else { +// //cblas_sgemv(CblasRowMajor, CblasTrans, ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1); +// } +// +//#endif + + + if (nb01 >= nb00) { + // TODO: do not support transposed src1 + assert(nb10 == sizeof(float)); + + // parallelize by src0 rows using ggml_vec_dot_f32 + + // total rows in src0 + const int nr = ne01*ne02*ne03; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + for (int ic = 0; ic < ne11; ++ic) { + // src1 indices + const int i13 = i03; + const int i12 = i02; + const int i11 = ic; + + // dst indices + const int i0 = i01; + const int i1 = i11; + const int i2 = i02; + const int i3 = i03; + + ggml_vec_dot_f32(ne00, + (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), + (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); + } + } + } else { + // parallelize by src1 columns using ggml_vec_mad_f32 + // each thread has its own work data + // during FINALIZE we accumulate all work data into dst + + // total columns in src1 + const int nc = ne10; + + // columns per thread + const int dc = (nc + nth - 1)/nth; + + // column range for this thread + const int ic0 = dc*ith; + const int ic1 = MIN(ic0 + dc, nc); + + // work data for thread + const int wo = (ne + CACHE_LINE_SIZE_F32)*ith; + float * const wdata = params->wdata; + + for (int i13 = 0; i13 < ne13; ++i13) { + for (int i12 = 0; i12 < ne12; ++i12) { + for (int i11 = 0; i11 < ne11; ++i11) { + for (int ic = ic0; ic < ic1; ++ic) { + // src1 indices + const int i10 = ic; + + // src0 indices + const int i03 = i13; + const int i02 = i12; + const int i00 = ic; + + // dst indices + const int i1 = i11; + const int i2 = i12; + const int i3 = i13; + + assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize); + + ggml_vec_mad_f32(ne01, + (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0), + (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)), + *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13))); + } + } + } + } + } + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +void ggml_compute_forward_mul_mat_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + const int ne12 = src1->ne[2]; + const int ne13 = src1->ne[3]; + + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; + const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + assert(ne02 == ne12); + assert(ne03 == ne13); + assert(ne2 == ne12); + assert(ne3 == ne13); + + // TODO: we don't support permuted src0 + assert(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t)); + + // dst cannot be transposed or permuted + assert(nb0 == sizeof(float)); + assert(nb0 <= nb1); + assert(nb1 <= nb2); + assert(nb2 <= nb3); + + assert(ne0 == ne01); + assert(ne1 == ne11); + assert(ne2 == ne02); + assert(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + // + // nb00 < nb01 - src0 is transposed + // compute by src0 columns + + if (params->type == GGML_TASK_INIT) { + if (nb01 >= nb00) { + ggml_fp16_t * const wdata = params->wdata; + + int id = 0; + for (int i13 = 0; i13 < ne13; ++i13) { + for (int i12 = 0; i12 < ne12; ++i12) { + for (int i11 = 0; i11 < ne11; ++i11) { + for (int i10 = 0; i10 < ne10; ++i10) { + wdata[id++] = ggml_fp32_to_fp16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); + } + } + } + } + + GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); + + return; + } + + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + if (nb01 >= nb00) { + return; + } + + // TODO: fix this memset (wsize is overestimated) + //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth); + + ggml_fp16_t * const wdata = params->wdata; + + // cols per thread + const int dc = (ne + nth - 1)/nth; + + // col range for this thread + const int ic0 = dc*ith; + const int ic1 = MIN(ic0 + dc, ne); + + for (int i = ic0; i < ic1; ++i) { + ((float *) dst->data)[i] = ggml_fp16_to_fp32(wdata[i]); + } + + for (int k = 1; k < nth; k++) { + for (int i = ic0; i < ic1; ++i) { + ((float *) dst->data)[i] += ggml_fp16_to_fp32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]); + } + } + + return; + } + + if (nb01 >= nb00) { + // fp16 -> half the size, so divide by 2 + // TODO: do not support transposed src1 + assert(nb10/2 == sizeof(ggml_fp16_t)); + + // parallelize by src0 rows using ggml_vec_dot_f32 + + // total rows in src0 + const int nr = ne01*ne02*ne03; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + ggml_fp16_t * wdata = params->wdata; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int i13 = i03; + const int i12 = i02; + + const int i0 = i01; + const int i2 = i02; + const int i3 = i03; + + ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + 0)*ne00; + + float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); + + for (int ic = 0; ic < ne11; ++ic) { + assert(ne00 % 32 == 0); + + ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); + } + } + } else { + // parallelize by src1 columns using ggml_vec_mad_f32 + // each thread has its own work data + // during FINALIZE we accumulate all work data into dst + + // total columns in src1 + const int nc = ne10; + + // columns per thread + const int dc = (nc + nth - 1)/nth; + + // column range for this thread + const int ic0 = dc*ith; + const int ic1 = MIN(ic0 + dc, nc); + + // work data for thread + const int wo = (ne + CACHE_LINE_SIZE_F32)*ith; + ggml_fp16_t * const wdata = params->wdata; + + for (int i13 = 0; i13 < ne13; ++i13) { + for (int i12 = 0; i12 < ne12; ++i12) { + for (int i11 = 0; i11 < ne11; ++i11) { + // dst indices + const int i1 = i11; + const int i2 = i12; + const int i3 = i13; + + ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0; + + for (int ic = ic0; ic < ic1; ++ic) { + // src1 indices + const int i10 = ic; + + // src0 indices + const int i03 = i13; + const int i02 = i12; + const int i00 = ic; + + assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize); + + ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)); + float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + + ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val); + } + } + } + } + } + + //int64_t t1 = ggml_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +void ggml_compute_forward_mul_mat( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_scale + +void ggml_compute_forward_scale_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // scale factor + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v); + } +} + +void ggml_compute_forward_scale( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_scale_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_cpy + +void ggml_compute_forward_cpy( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, src0, dst); +} + +// ggml_compute_forward_reshape + +void ggml_compute_forward_reshape( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(src0); + UNUSED(dst); +} + +// ggml_compute_forward_view + +void ggml_compute_forward_view( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_permute + +void ggml_compute_forward_permute( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_transpose + +void ggml_compute_forward_transpose( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_get_rows + +void ggml_compute_forward_get_rows_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + assert( dst->ne[0] == nc); + assert( dst->ne[1] == nr); + assert(src0->nb[0] == sizeof(ggml_fp16_t)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + for (int j = 0; j < nc; ++j) { + ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j]; + ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = ggml_fp16_to_fp32(v); + } + } +} + +void ggml_compute_forward_get_rows_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + assert( dst->ne[0] == nc); + assert( dst->ne[1] == nr); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + ggml_vec_cpy_f32(nc, + (float *) ((char *) dst->data + i*dst->nb[1]), + (float *) ((char *) src0->data + r*src0->nb[1])); + } +} + +void ggml_compute_forward_get_rows( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rows_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_get_rows_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_diag_mask_inf + +void ggml_compute_forward_diag_mask_inf_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 1); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + + // TODO: handle transposed/permuted matrices + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + const int nr = src0->ne[1]; + const int nz = n/nr; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int k = 0; k < nz; k++) { + for (int j = 0; j < nr; j++) { + for (int i = n_past; i < nc; i++) { + if (i > n_past + j) { + *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY; + } + } + } + } +} + +void ggml_compute_forward_diag_mask_inf( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_soft_max + +void ggml_compute_forward_soft_max_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float *p = (float *)((char *) dst->data + i1*dst->nb[1]); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(p[i])); + } +#endif + + float max = -INFINITY; + for (int i = 0; i < nc; i++) { + max = MAX(max, p[i]); + } + + ggml_float sum = 0.0; + for (int i = 0; i < nc; i++) { + const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max); + sum += v; + p[i] = v; + } + + assert(sum > 0.0f); + + sum = 1.0/sum; + ggml_vec_scale_f32(nc, p, sum); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(p[i])); + assert(!isinf(p[i])); + } +#endif + } +} + +void ggml_compute_forward_soft_max( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_soft_max_f32(params, src0, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_rope + +void ggml_compute_forward_rope_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 3); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + //const int ne0 = src0->ne[0]; + const int ne1 = src0->ne[1]; + const int ne2 = src0->ne[2]; + const int ne3 = src0->ne[3]; + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + const int nb3 = src0->nb[3]; + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + assert(nb0 == sizeof(float)); + + // TODO: optimize + for (int i3 = 0; i3 < ne3; i3++) { + for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int p = (mode == 0 ? n_past + i2 : i2); + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < n_dims; i0 += 2) { + const double theta = pow(10000.0, ((double)-i0)/n_dims); + + const double cos_theta = cos(p*theta); + const double sin_theta = sin(p*theta); + + const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + double x0 = src[0]; + double x1 = src[1]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[1] = x0*sin_theta + x1*cos_theta; + } + } + } + } +} + +void ggml_compute_forward_rope( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rope_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + assert(false); + } break; + } +} + +// ggml_compute_forward_conv_1d_1s + +void ggml_compute_forward_conv_1d_1s_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + //const int ne12 = src1->ne[2]; + //const int ne13 = src1->ne[3]; + + //const int ne0 = dst->ne[0]; + //const int ne1 = dst->ne[1]; + //const int ne2 = dst->ne[2]; + //const int ne3 = dst->ne[3]; + //const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + // WHISPER + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; + for (int i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; + + for (int i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + ggml_fp16_t * dst_data = wdata; + for (int i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]); + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int i0 = 0; i0 < ne10; ++i0) { + dst_data[i0] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f16(ew0, &v, + (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0] += v; + } + } + } +} + +void ggml_compute_forward_conv_1d_1s_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + //const int ne12 = src1->ne[2]; + //const int ne13 = src1->ne[3]; + + //const int ne0 = dst->ne[0]; + //const int ne1 = dst->ne[1]; + //const int ne2 = dst->ne[2]; + //const int ne3 = dst->ne[3]; + //const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + // WHISPER + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + float * const wdata = (float *) params->wdata + 0; + + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i02*ew0*ne00; + for (int i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + ne02*ew0*ne00; + + for (int i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + float * dst_data = wdata; + for (int i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = src[i10]; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int i0 = 0; i0 < ne10; ++i0) { + dst_data[i0] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f32(ew0, &v, + (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0] += v; + } + } + } +} + +void ggml_compute_forward_conv_1d_1s( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_1d_2s + +void ggml_compute_forward_conv_1d_2s_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + //const int ne12 = src1->ne[2]; + //const int ne13 = src1->ne[3]; + + //const int ne0 = dst->ne[0]; + //const int ne1 = dst->ne[1]; + //const int ne2 = dst->ne[2]; + //const int ne3 = dst->ne[3]; + //const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + // WHISPER + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; + for (int i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; + + for (int i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + ggml_fp16_t * dst_data = wdata; + for (int i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]); + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int i0 = 0; i0 < ne10; i0 += 2) { + dst_data[i0/2] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f16(ew0, &v, + (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0/2] += v; + } + } + } +} + +void ggml_compute_forward_conv_1d_2s_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + //const int ne03 = src0->ne[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + //const int ne12 = src1->ne[2]; + //const int ne13 = src1->ne[3]; + + //const int ne0 = dst->ne[0]; + //const int ne1 = dst->ne[1]; + //const int ne2 = dst->ne[2]; + //const int ne3 = dst->ne[3]; + //const int ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + // WHISPER + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + float * const wdata = (float *) params->wdata + 0; + + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i02*ew0*ne00; + for (int i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + ne02*ew0*ne00; + + for (int i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + float * dst_data = wdata; + for (int i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = src[i10]; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int i0 = 0; i0 < ne10; i0 += 2) { + dst_data[i0/2] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f32(ew0, &v, + (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0/2] += v; + } + } + } +} + +void ggml_compute_forward_conv_1d_2s( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +///////////////////////////////// + +void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { + assert(params); + + switch (tensor->op) { + case GGML_OP_DUP: + { + ggml_compute_forward_dup(params, tensor->src0, tensor); + } break; + case GGML_OP_ADD: + { + ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SUB: + { + ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_MUL: + { + ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_DIV: + { + ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SQR: + { + ggml_compute_forward_sqr(params, tensor->src0, tensor); + } break; + case GGML_OP_SQRT: + { + ggml_compute_forward_sqrt(params, tensor->src0, tensor); + } break; + case GGML_OP_SUM: + { + ggml_compute_forward_sum(params, tensor->src0, tensor); + } break; + case GGML_OP_MEAN: + { + ggml_compute_forward_mean(params, tensor->src0, tensor); + } break; + case GGML_OP_REPEAT: + { + ggml_compute_forward_repeat(params, tensor->src0, tensor); + } break; + case GGML_OP_ABS: + { + ggml_compute_forward_abs(params, tensor->src0, tensor); + } break; + case GGML_OP_SGN: + { + ggml_compute_forward_sgn(params, tensor->src0, tensor); + } break; + case GGML_OP_NEG: + { + ggml_compute_forward_neg(params, tensor->src0, tensor); + } break; + case GGML_OP_STEP: + { + ggml_compute_forward_step(params, tensor->src0, tensor); + } break; + case GGML_OP_RELU: + { + ggml_compute_forward_relu(params, tensor->src0, tensor); + } break; + case GGML_OP_GELU: + { + ggml_compute_forward_gelu(params, tensor->src0, tensor); + } break; + case GGML_OP_NORM: + { + ggml_compute_forward_norm(params, tensor->src0, tensor); + } break; + case GGML_OP_MUL_MAT: + { + ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SCALE: + { + ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CPY: + { + ggml_compute_forward_cpy(params, tensor->src0, tensor); + } break; + case GGML_OP_RESHAPE: + { + ggml_compute_forward_reshape(params, tensor->src0, tensor); + } break; + case GGML_OP_VIEW: + { + ggml_compute_forward_view(params, tensor->src0); + } break; + case GGML_OP_PERMUTE: + { + ggml_compute_forward_permute(params, tensor->src0); + } break; + case GGML_OP_TRANSPOSE: + { + ggml_compute_forward_transpose(params, tensor->src0); + } break; + case GGML_OP_GET_ROWS: + { + ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_DIAG_MASK_INF: + { + ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SOFT_MAX: + { + ggml_compute_forward_soft_max(params, tensor->src0, tensor); + } break; + case GGML_OP_ROPE: + { + ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CONV_1D_1S: + { + ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CONV_1D_2S: + { + ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + assert(false); + } break; + }; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) { + struct ggml_tensor * src0 = tensor->src0; + struct ggml_tensor * src1 = tensor->src1; + + switch (tensor->op) { + case GGML_OP_DUP: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_ADD: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_SUB: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_MUL: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, src1, tensor->grad), + inplace); + } + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + ggml_mul(ctx, src0, tensor->grad), + inplace); + } + } break; + case GGML_OP_DIV: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_div(ctx, tensor->grad, src1), + inplace); + } + if (src1->grad) { + src1->grad = + ggml_sub_impl(ctx, + src1->grad, + ggml_mul(ctx, + tensor->grad, + ggml_div(ctx, tensor, src1)), + inplace); + } + } break; + case GGML_OP_SQR: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, + ggml_mul(ctx, src0, tensor->grad), + ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)), + inplace); + } + } break; + case GGML_OP_SQRT: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_div(ctx, + ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor), + tensor), + inplace); + } + } break; + case GGML_OP_SUM: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_repeat(ctx, tensor->grad, src0->grad), + inplace); + } + } break; + case GGML_OP_MEAN: + { + assert(false); // TODO: implement + } break; + case GGML_OP_REPEAT: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_sum(ctx, tensor->grad), + inplace); + } + } break; + case GGML_OP_ABS: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, + ggml_sgn(ctx, src0), + tensor->grad), + inplace); + } + } break; + case GGML_OP_SGN: + { + if (src0->grad) { + // noop + } + } break; + case GGML_OP_NEG: + { + if (src0->grad) { + src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_STEP: + { + if (src0->grad) { + // noop + } + } break; + case GGML_OP_RELU: + { + if (src0->grad) { + src0->grad = ggml_sub_impl(ctx, + src0->grad, + ggml_mul(ctx, + ggml_step(ctx, src0), + tensor->grad), + inplace); + } + } break; + case GGML_OP_GELU: + { + assert(false); // TODO: not implemented + } break; + case GGML_OP_NORM: + { + assert(false); // TODO: not implemented + } break; + case GGML_OP_MUL_MAT: + { + if (src0->grad) { + // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad); + assert(false); + } + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + // TODO: fix transpose, the node will break the graph connections + ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad), + inplace); + } + } break; + case GGML_OP_SCALE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CPY: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_RESHAPE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_VIEW: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_PERMUTE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_TRANSPOSE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_GET_ROWS: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_DIAG_MASK_INF: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_SOFT_MAX: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ROPE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_1D_1S: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_1D_2S: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + }; +} + +void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { + if (node->grad == NULL) { + // this usually happens when we generate intermediate nodes from constants in the backward pass + // it can also happen during forward pass, if the user performs computations with constants + if (node->op != GGML_OP_NONE) { + //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op); + } + } + + // check if already visited + for (int i = 0; i < cgraph->n_nodes; i++) { + if (cgraph->nodes[i] == node) { + return; + } + } + + for (int i = 0; i < cgraph->n_leafs; i++) { + if (cgraph->leafs[i] == node) { + return; + } + } + + if (node->src0) { + ggml_visit_parents(cgraph, node->src0); + } + + if (node->src1) { + ggml_visit_parents(cgraph, node->src1); + } + + if (node->op == GGML_OP_NONE && node->grad == NULL) { + // reached a leaf node, not part of the gradient graph (e.g. a constant) + assert(cgraph->n_leafs < GGML_MAX_NODES); + + cgraph->leafs[cgraph->n_leafs] = node; + cgraph->n_leafs++; + } else { + assert(cgraph->n_nodes < GGML_MAX_NODES); + + cgraph->nodes[cgraph->n_nodes] = node; + cgraph->grads[cgraph->n_nodes] = node->grad; + cgraph->n_nodes++; + } +} + +void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { + if (!expand) { + cgraph->n_nodes = 0; + cgraph->n_leafs = 0; + } + + const int n0 = cgraph->n_nodes; + UNUSED(n0); + + ggml_visit_parents(cgraph, tensor); + + const int n_new = cgraph->n_nodes - n0; + GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); + + if (n_new > 0) { + // the last added node should always be starting point + assert(cgraph->nodes[cgraph->n_nodes - 1] == tensor); + } +} + +void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { + ggml_build_forward_impl(cgraph, tensor, true); +} + +struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { + struct ggml_cgraph result = { + /*.n_nodes =*/ 0, + /*.n_leafs =*/ 0, + /*.n_threads =*/ 0, + /*.work_size =*/ 0, + /*.work =*/ NULL, + /*.nodes =*/ { NULL }, + /*.grads =*/ { NULL }, + /*.leafs =*/ { NULL }, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + }; + + ggml_build_forward_impl(&result, tensor, false); + + return result; +} + +struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { + struct ggml_cgraph result = *gf; + + assert(gf->n_nodes > 0); + + // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph + if (keep) { + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->grad) { + node->grad = ggml_dup_tensor(ctx, node); + gf->grads[i] = node->grad; + } + } + } + + for (int i = gf->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = gf->nodes[i]; + + // because we detached the grad nodes from the original graph, we can afford inplace operations + if (node->grad) { + ggml_compute_backward(ctx, node, keep); + } + } + + for (int i = gf->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->is_param) { + GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); + ggml_build_forward_impl(&result, node->grad, true); + } + } + + return result; +} + +// +// thread data +// +// synchronization is done via busy loops +// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops +// + +#ifdef __APPLE__ + +//#include + +//typedef os_unfair_lock ggml_lock_t; +// +//#define ggml_lock_init(x) UNUSED(x) +//#define ggml_lock_destroy(x) UNUSED(x) +//#define ggml_lock_lock os_unfair_lock_lock +//#define ggml_lock_unlock os_unfair_lock_unlock +// +//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#define ggml_lock_lock(x) UNUSED(x) +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +#else + +//typedef pthread_spinlock_t ggml_lock_t; + +//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE) +//#define ggml_lock_destroy pthread_spin_destroy +//#define ggml_lock_lock pthread_spin_lock +//#define ggml_lock_unlock pthread_spin_unlock + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#define ggml_lock_lock(x) UNUSED(x) +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +#endif + +struct ggml_compute_state_shared { + ggml_lock_t spin; + + int n_threads; + + // synchronization primitives + atomic_int n_ready; + atomic_bool has_work; + atomic_bool stop; // stop all threads +}; + +struct ggml_compute_state { + pthread_t thrd; + + struct ggml_compute_params params; + struct ggml_tensor * node; + + struct ggml_compute_state_shared * shared; +}; + +// function used by each compute thread +void * ggml_graph_compute_one(void * data) { + struct ggml_compute_state * state = (struct ggml_compute_state *) data; + + ggml_compute_forward(&state->params, state->node); + + return NULL; +} + +void * ggml_graph_compute_thread(void * data) { + struct ggml_compute_state * state = (struct ggml_compute_state *) data; + + const int n_threads = state->shared->n_threads; + + while (true) { + if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) { + atomic_store(&state->shared->has_work, false); + } else { + while (atomic_load(&state->shared->has_work)) { + if (atomic_load(&state->shared->stop)) { + return NULL; + } + ggml_lock_lock (&state->shared->spin); + ggml_lock_unlock(&state->shared->spin); + } + } + + atomic_fetch_sub(&state->shared->n_ready, 1); + + // wait for work + while (!atomic_load(&state->shared->has_work)) { + if (atomic_load(&state->shared->stop)) { + return NULL; + } + ggml_lock_lock (&state->shared->spin); + ggml_lock_unlock(&state->shared->spin); + } + + // check if we should stop + if (atomic_load(&state->shared->stop)) { + break; + } + + if (state->node) { + ggml_compute_forward(&state->params, state->node); + state->node = NULL; + } else { + break; + } + } + + return NULL; +} + +void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { + if (cgraph->n_threads <= 0) { + cgraph->n_threads = 8; + } + + const int n_threads = cgraph->n_threads; + + struct ggml_compute_state_shared state_shared = { + /*.spin =*/ GGML_LOCK_INITIALIZER, + /*.n_threads =*/ n_threads, + /*.n_ready =*/ 0, + /*.has_work =*/ false, + /*.stop =*/ false, + }; + struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL; + + // create thread pool + if (n_threads > 1) { + ggml_lock_init(&state_shared.spin); + + atomic_store(&state_shared.has_work, true); + + for (int j = 0; j < n_threads - 1; j++) { + workers[j] = (struct ggml_compute_state) { + .thrd = 0, + .params = { + .type = GGML_TASK_COMPUTE, + .ith = j + 1, + .nth = n_threads, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }, + .node = NULL, + .shared = &state_shared, + }; + int rc = pthread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); + assert(rc == 0); + UNUSED(rc); + } + } + + // initialize tasks + work buffer + { + size_t work_size = 0; + + // thread scheduling for the different operations + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + switch (node->op) { + case GGML_OP_DUP: + case GGML_OP_ADD: + case GGML_OP_SUB: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_SUM: + case GGML_OP_MEAN: + case GGML_OP_REPEAT: + case GGML_OP_ABS: + case GGML_OP_SGN: + case GGML_OP_NEG: + case GGML_OP_STEP: + case GGML_OP_RELU: + { + node->n_tasks = 1; + } break; + case GGML_OP_GELU: + { + node->n_tasks = MIN(n_threads, ggml_nrows(node->src0)); + } break; + case GGML_OP_NORM: + { + node->n_tasks = 1; + } break; + case GGML_OP_MUL_MAT: + { + // TODO: use different scheduling for different matrix sizes + node->n_tasks = n_threads; + + size_t cur = 0; + + // TODO: better way to determine if the matrix is transposed + if (node->src0->nb[1] < node->src0->nb[0]) { + cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1) + } else { + if (node->src0->type == GGML_TYPE_F16 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = 0; + } else { + GGML_ASSERT(false); + } + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_SCALE: + { + node->n_tasks = MIN(n_threads, ggml_nrows(node->src0)); + } break; + case GGML_OP_CPY: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_GET_ROWS: + case GGML_OP_DIAG_MASK_INF: + { + node->n_tasks = 1; + } break; + case GGML_OP_SOFT_MAX: + { + node->n_tasks = MIN(n_threads, ggml_nrows(node->src0)); + } break; + case GGML_OP_ROPE: + { + node->n_tasks = 1; + } break; + case GGML_OP_CONV_1D_1S: + case GGML_OP_CONV_1D_2S: + { + // WHISPER + node->n_tasks = n_threads; + + GGML_ASSERT(node->src0->ne[3] == 1); + GGML_ASSERT(node->src1->ne[2] == 1); + GGML_ASSERT(node->src1->ne[3] == 1); + + size_t cur = 0; + const int nk = node->src0->ne[0]; + + if (node->src0->type == GGML_TYPE_F16 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else { + GGML_ASSERT(false); + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_NONE: + { + node->n_tasks = 1; + } break; + case GGML_OP_COUNT: + { + assert(false); + } break; + }; + } + + if (cgraph->work != NULL && work_size > cgraph->work_size) { + assert(false); // TODO: better handling + } + + if (work_size > 0 && cgraph->work == NULL) { + cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1); + + GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size); + cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size); + } + } + + const int64_t perf_start_cycles = ggml_perf_cycles(); + const int64_t perf_start_time_us = ggml_perf_time_us(); + + for (int i = 0; i < cgraph->n_nodes; i++) { + GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes); + + struct ggml_tensor * node = cgraph->nodes[i]; + + // TODO: this could be used to avoid unnecessary computations, but it needs to be improved + //if (node->grad == NULL && node->perf_runs > 0) { + // continue; + //} + + const int64_t perf_node_start_cycles = ggml_perf_cycles(); + const int64_t perf_node_start_time_us = ggml_perf_time_us(); + + // INIT + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_INIT, + /*.ith =*/ 0, + /*.nth =*/ n_threads, + /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, + /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + }; + + ggml_compute_forward(¶ms, node); + + // COMPUTE + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + // launch thread pool + for (int j = 0; j < n_threads - 1; j++) { + workers[j].params = (struct ggml_compute_params) { + .type = GGML_TASK_COMPUTE, + .ith = j + 1, + .nth = n_threads, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }; + workers[j].node = node; + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) > 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_store(&state_shared.has_work, true); + } + + params.type = GGML_TASK_COMPUTE; + ggml_compute_forward(¶ms, node); + + // wait for thread pool + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) != 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + } + + // FINALIZE + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + // launch thread pool + for (int j = 0; j < n_threads - 1; j++) { + workers[j].params = (struct ggml_compute_params) { + .type = GGML_TASK_FINALIZE, + .ith = j + 1, + .nth = n_threads, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }; + workers[j].node = node; + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) > 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_store(&state_shared.has_work, true); + } + + params.type = GGML_TASK_FINALIZE; + ggml_compute_forward(¶ms, node); + + // wait for thread pool + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) != 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + } + + // performance stats (node) + { + int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles; + int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us; + + node->perf_runs++; + node->perf_cycles += perf_cycles_cur; + node->perf_time_us += perf_time_us_cur; + } + } + + // join thread pool + if (n_threads > 1) { + atomic_store(&state_shared.stop, true); + atomic_store(&state_shared.has_work, true); + + for (int j = 0; j < n_threads - 1; j++) { + int rc = pthread_join(workers[j].thrd, NULL); + assert(rc == 0); + UNUSED(rc); + } + + ggml_lock_destroy(&state_shared.spin); + } + + // performance stats (graph) + { + int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles; + int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us; + + cgraph->perf_runs++; + cgraph->perf_cycles += perf_cycles_cur; + cgraph->perf_time_us += perf_time_us_cur; + + GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n", + __func__, cgraph->perf_runs, + (double) perf_cycles_cur / (double) ggml_cycles_per_ms(), + (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs, + (double) perf_time_us_cur / 1000.0, + (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs); + } +} + +void ggml_graph_reset(struct ggml_cgraph * cgraph) { + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * grad = cgraph->grads[i]; + + if (grad) { + ggml_set_zero(grad); + } + } +} + +void ggml_graph_print(const struct ggml_cgraph * cgraph) { + int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0}; + + GGML_PRINT("=== GRAPH ===\n"); + + GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); + GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size); + + GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + perf_total_per_op_us[node->op] += node->perf_time_us; + + GGML_PRINT(" - %3d: [ %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", + i, + node->ne[0], node->ne[1], + GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, + (double) node->perf_cycles / (double) ggml_cycles_per_ms(), + (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs, + (double) node->perf_time_us / 1000.0, + (double) node->perf_time_us / 1000.0 / node->perf_runs); + } + + GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs); + for (int i = 0; i < cgraph->n_leafs; i++) { + struct ggml_tensor * node = cgraph->leafs[i]; + + GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n", + i, + node->ne[0], node->ne[1], + GGML_OP_LABEL[node->op]); + } + + for (int i = 0; i < GGML_OP_COUNT; i++) { + GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0); + } + + GGML_PRINT("========================================\n"); +} + +// check if node is part of the graph +bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + if (cgraph == NULL) { + return true; + } + + for (int i = 0; i < cgraph->n_nodes; i++) { + if (cgraph->nodes[i] == node) { + return true; + } + } + + return false; +} + +struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * parent = cgraph->nodes[i]; + + if (parent->grad == node) { + return parent; + } + } + + return NULL; +} + +void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { + char color[16]; + + FILE * fp = fopen(filename, "w"); + assert(fp); + + fprintf(fp, "digraph G {\n"); + fprintf(fp, " newrank = true;\n"); + fprintf(fp, " rankdir = LR;\n"); + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + if (ggml_graph_get_parent(gb, node) != NULL) { + continue; + } + + if (node->is_param) { + snprintf(color, sizeof(color), "yellow"); + } else if (node->grad) { + if (ggml_graph_find(gf, node)) { + snprintf(color, sizeof(color), "green"); + } else { + snprintf(color, sizeof(color), "lightblue"); + } + } else { + snprintf(color, sizeof(color), "white"); + } + + fprintf(fp, " \"%p\" [ \ +style = filled; fillcolor = %s; shape = record; \ +label=\"%d [%d, %d] | %s", + (void *) node, color, + i, node->ne[0], node->ne[1], + GGML_OP_SYMBOL[node->op]); + + if (node->grad) { + fprintf(fp, " | %s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]); + } else { + fprintf(fp, "\"; ]\n"); + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + snprintf(color, sizeof(color), "pink"); + + if (ggml_nelements(node) == 1) { + fprintf(fp, " \"%p\" [ \ +style = filled; fillcolor = %s; shape = record; \ +label=\"%.1e\"; ]\n", + (void *) node, color, ggml_get_f32_1d(node, 0)); + } else { + fprintf(fp, " \"%p\" [ \ +style = filled; fillcolor = %s; shape = record; \ +label=\"CONST %d [%d, %d]\"; ]\n", + (void *) node, color, + i, node->ne[0], node->ne[1]); + } + } + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + struct ggml_tensor * parent = ggml_graph_get_parent(gb, node); + + if (node->src0) { + struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0); + + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n", + parent0 ? (void *) parent0 : (void *) node->src0, + parent0 ? "g" : "x", + parent ? (void *) parent : (void *) node, + parent ? "g" : "x", + parent ? "empty" : "vee", + parent ? "dashed" : "solid"); + } + + if (node->src1) { + struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1); + + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n", + parent1 ? (void *) parent1 : (void *) node->src1, + parent1 ? "g" : "x", + parent ? (void *) parent : (void *) node, + parent ? "g" : "x", + parent ? "empty" : "vee", + parent ? "dashed" : "solid"); + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + if (node->src0) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n", + (void *) node->src0, "x", + (void *) node, "x"); + } + + if (node->src1) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n", + (void *) node->src1, "x", + (void *) node, "x"); + } + } + + fprintf(fp, "}\n"); + + fclose(fp); + + GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int ne = ggml_nelements(ps[p]) ; + // TODO: add function to set tensor from array + for (int j = 0; j < ne; ++j) { + ggml_set_f32_1d(ps[p], j, x[i++]); + } + } +} + +void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int j = 0; j < ne; ++j) { + x[i++] = ggml_get_f32_1d(ps[p], j); + } + } +} + +void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int j = 0; j < ne; ++j) { + g[i++] = ggml_get_f32_1d(ps[p]->grad, j); + } + } +} + +// +// ADAM +// +// ref: https://arxiv.org/pdf/1412.6980.pdf +// + +enum ggml_opt_result ggml_opt_adam( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb) { + assert(ggml_is_scalar(f)); + + gf->n_threads = params.n_threads; + gb->n_threads = params.n_threads; + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->is_param) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + assert(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + // constants + const float alpha = params.adam.alpha; + const float beta1 = params.adam.beta1; + const float beta2 = params.adam.beta2; + const float eps = params.adam.eps; + + float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters + float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient + float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared + float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment + float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment + float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat + float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat + + float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values + + // initialize + ggml_vec_set_f32(nx, m, 0.0f); + ggml_vec_set_f32(nx, v, 0.0f); + + // update view + ggml_opt_get_params(np, ps, x); + + // compute the function value + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + float fx_prev = ggml_get_f32_1d(f, 0); + if (pf) { + pf[0] = fx_prev; + } + + int n_no_improvement = 0; + float fx_best = fx_prev; + + // run the optimizer + for (int t = 0; t < params.adam.n_iter; ++t) { + GGML_PRINT_DEBUG ("=== iter %d ===\n", t); + + GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0)); + GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0)); + + for (int i = 0; i < np; ++i) { + GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i, + ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0)); + } + + const int64_t t_start_wall = ggml_time_us(); + const int64_t t_start_cpu = ggml_cycles(); + UNUSED(t_start_wall); + UNUSED(t_start_cpu); + + { + // update the gradient + ggml_opt_get_grad(np, ps, g1); + + // m_t = beta1*m_t-1 + (1 - beta1)*g_t + ggml_vec_scale_f32(nx, m, beta1); + ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1); + + // g2 = g1^2 + ggml_vec_sqr_f32 (nx, g2, g1); + + // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2 + ggml_vec_scale_f32(nx, v, beta2); + ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2); + + // m^hat = m_t / (1 - beta1^t) + // v^hat = v_t / (1 - beta2^t) + // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps) + ggml_vec_cpy_f32 (nx, mh, m); + ggml_vec_cpy_f32 (nx, vh, v); + + ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1))); + ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1))); + + ggml_vec_sqrt_f32 (nx, vh, vh); + ggml_vec_acc1_f32 (nx, vh, eps); + + ggml_vec_div_f32 (nx, mh, mh, vh); + ggml_vec_sub_f32 (nx, x, x, mh); + + // update the parameters + ggml_opt_set_params(np, ps, x); + } + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + const float fx = ggml_get_f32_1d(f, 0); + + // check convergence + if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) { + GGML_PRINT_DEBUG("converged\n"); + + return GGML_OPT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= t) { + const float rate = (pf[t%params.past] - fx)/fx; + + if (fabs(rate) < params.delta) { + return GGML_OPT_OK; + } + } + + pf[t%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx_best > fx) { + fx_best = fx; + n_no_improvement = 0; + } else { + ++n_no_improvement; + + if (n_no_improvement >= params.max_no_improvement) { + return GGML_OPT_OK; + } + } + } + + fx_prev = fx; + + { + const int64_t t_end_cpu = ggml_cycles(); + GGML_PRINT_DEBUG("time iter: %5.3f s\n", (t_end_cpu - t_start_cpu)/CLOCKS_PER_SEC); + UNUSED(t_end_cpu); + + const int64_t t_end_wall = ggml_time_us(); + GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6); + UNUSED(t_end_wall); + } + } + + return GGML_OPT_DID_NOT_CONVERGE; +} + +// +// L-BFGS +// +// the L-BFGS implementation below is based on the following implementation: +// +// https://github.com/chokkan/liblbfgs +// + +struct ggml_lbfgs_iteration_data { + float alpha; + float ys; + float * s; + float * y; +}; + +static enum ggml_opt_result linesearch_backtracking( + struct ggml_context * ctx, + const struct ggml_opt_params * params, + int nx, + float * x, + float * fx, + float * g, + float * d, + float * step, + const float * xp, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + const int np, + struct ggml_tensor * ps[]) { + int count = 0; + + float width = 0.0f; + float dg = 0.0f; + float finit = 0.0f; + float dginit = 0.0f; + float dgtest = 0.0f; + + const float dec = 0.5f; + const float inc = 2.1f; + + if (*step <= 0.) { + return GGML_LINESEARCH_INVALID_PARAMETERS; + } + + // compute the initial gradient in the search direction + ggml_vec_dot_f32(nx, &dginit, g, d); + + // make sure that d points to a descent direction + if (0 < dginit) { + return GGML_LINESEARCH_FAIL; + } + + // initialize local variables + finit = *fx; + dgtest = params->lbfgs.ftol*dginit; + + while (true) { + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_mad_f32(nx, x, d, *step); + + // evaluate the function and gradient values + { + ggml_opt_set_params(np, ps, x); + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + ggml_opt_get_grad(np, ps, g); + + *fx = ggml_get_f32_1d(f, 0); + } + + ++count; + + if (*fx > finit + (*step)*dgtest) { + width = dec; + } else { + // Armijo condition is satisfied + if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) { + return count; + } + + ggml_vec_dot_f32(nx, &dg, g, d); + + // check the Wolfe condition + if (dg < params->lbfgs.wolfe * dginit) { + width = inc; + } else { + if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) { + // regular Wolfe conditions + return count; + } + + if(dg > -params->lbfgs.wolfe*dginit) { + width = dec; + } else { + // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) + return count; + } + return count; + } + } + + if (*step < params->lbfgs.min_step) { + return GGML_LINESEARCH_MINIMUM_STEP; + } + if (*step > params->lbfgs.max_step) { + return GGML_LINESEARCH_MAXIMUM_STEP; + } + if (params->lbfgs.max_linesearch <= count) { + return GGML_LINESEARCH_MAXIMUM_ITERATIONS; + } + + (*step) *= width; + } + + return GGML_LINESEARCH_FAIL; +} + +enum ggml_opt_result ggml_opt_lbfgs( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb) { + if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || + params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { + if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) { + return GGML_OPT_INVALID_WOLFE; + } + } + + gf->n_threads = params.n_threads; + gb->n_threads = params.n_threads; + + const int m = params.lbfgs.m; + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->is_param) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + assert(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters + float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters + float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient + float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient + float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction + + float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values + + float fx = 0.0f; // cost function value + float xnorm = 0.0f; // ||x|| + float gnorm = 0.0f; // ||g|| + float step = 0.0f; + + // initialize x from the graph nodes + ggml_opt_get_params(np, ps, x); + + // the L-BFGS memory + struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m); + + for (int i = 0; i < m; ++i) { + lm[i].alpha = 0.0f; + lm[i].ys = 0.0f; + lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; + lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; + } + + // evaluate the function value and its gradient + { + ggml_opt_set_params(np, ps, x); + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + ggml_opt_get_grad(np, ps, g); + + fx = ggml_get_f32_1d(f, 0); + } + + if (pf) { + pf[0] = fx; + } + + float fx_best = fx; + + // search direction = -gradient + ggml_vec_neg_f32(nx, d, g); + + // ||x||, ||g|| + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + if (xnorm < 1.0f) { + xnorm = 1.0f; + } + + // already optimized + if (gnorm/xnorm <= params.lbfgs.eps) { + return GGML_OPT_OK; + } + + // initial step + ggml_vec_norm_inv_f32(nx, &step, d); + + int j = 0; + int k = 1; + int ls = 0; + int end = 0; + int bound = 0; + int n_no_improvement = 0; + + float ys = 0.0f; + float yy = 0.0f; + float beta = 0.0f; + + while (true) { + // store the current position and gradient vectors + ggml_vec_cpy_f32(nx, xp, x); + ggml_vec_cpy_f32(nx, gp, g); + + ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps); + + if (ls < 0) { + // linesearch failed - go back to the previous point and return + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_cpy_f32(nx, g, gp); + + return ls; + } + + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + + if (xnorm < 1.0) { + xnorm = 1.0; + } + if (gnorm/xnorm <= params.lbfgs.eps) { + // converged + return GGML_OPT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= k) { + const float rate = (pf[k%params.past] - fx)/fx; + + if (fabs(rate) < params.delta) { + return GGML_OPT_OK; + } + } + + pf[k%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx < fx_best) { + fx_best = fx; + n_no_improvement = 0; + } else { + n_no_improvement++; + + if (n_no_improvement >= params.max_no_improvement) { + return GGML_OPT_OK; + } + } + } + + if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) { + // reached the maximum number of iterations + return GGML_OPT_DID_NOT_CONVERGE; + } + + // update vectors s and y: + // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}. + // y_{k+1} = g_{k+1} - g_{k}. + // + ggml_vec_sub_f32(nx, lm[end].s, x, xp); + ggml_vec_sub_f32(nx, lm[end].y, g, gp); + + // compute scalars ys and yy: + // ys = y^t \cdot s -> 1 / \rho. + // yy = y^t \cdot y. + // + ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s); + ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y); + + lm[end].ys = ys; + + // find new search direction + // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS + + bound = (m <= k) ? m : k; + k++; + end = (end + 1)%m; + + // initialize search direction with -g + ggml_vec_neg_f32(nx, d, g); + + j = end; + for (int i = 0; i < bound; ++i) { + j = (j + m - 1) % m; + // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1} + ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d); + lm[j].alpha /= lm[j].ys; + // q_{i} = q_{i+1} - \alpha_{i} y_{i} + ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha); + } + + ggml_vec_scale_f32(nx, d, ys/yy); + + for (int i = 0; i < bound; ++i) { + // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i} + ggml_vec_dot_f32(nx, &beta, lm[j].y, d); + beta /= lm[j].ys; + // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j} + ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta); + j = (j + 1)%m; + } + + step = 1.0; + } + + return GGML_OPT_DID_NOT_CONVERGE; +} + +struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { + struct ggml_opt_params result; + + switch (type) { + case GGML_OPT_ADAM: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_ADAM, + .n_threads = 1, + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 100, + + .print_forward_graph = true, + .print_backward_graph = true, + + .adam = { + .n_iter = 10000, + .alpha = 0.001f, + .beta1 = 0.9f, + .beta2 = 0.999f, + .eps = 1e-8f, + .eps_f = 1e-5f, + .eps_g = 1e-3f, + }, + }; + } break; + case GGML_OPT_LBFGS: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_LBFGS, + .n_threads = 1, + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 0, + + .print_forward_graph = true, + .print_backward_graph = true, + + .lbfgs = { + .m = 6, + .n_iter = 100, + .max_linesearch = 20, + + .eps = 1e-5f, + .ftol = 1e-4f, + .wolfe = 0.9f, + .min_step = 1e-20f, + .max_step = 1e+20f, + + .linesearch = GGML_LINESEARCH_DEFAULT, + }, + }; + } break; + } + + return result; +} + +enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f) { + bool free_ctx = false; + if (ctx == NULL) { + struct ggml_init_params params_ctx = { + .mem_size = 16*1024*1024, + .mem_buffer = NULL, + }; + + ctx = ggml_init(params_ctx); + if (ctx == NULL) { + return GGML_OPT_NO_CONTEXT; + } + + free_ctx = true; + } + + enum ggml_opt_result result = GGML_OPT_OK; + + // build forward + backward compute graphs + struct ggml_cgraph gf = ggml_build_forward (f); + struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false); + + switch (params.type) { + case GGML_OPT_ADAM: + { + result = ggml_opt_adam(ctx, params, f, &gf, &gb); + } break; + case GGML_OPT_LBFGS: + { + result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb); + } break; + } + + if (params.print_forward_graph) { + ggml_graph_print (&gf); + ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot"); + } + + if (params.print_backward_graph) { + ggml_graph_print (&gb); + ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot"); + } + + if (free_ctx) { + ggml_free(ctx); + } + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// diff --git a/ggml.h b/ggml.h new file mode 100644 index 00000000000..1078fbe82d2 --- /dev/null +++ b/ggml.h @@ -0,0 +1,527 @@ +#pragma once + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include +#include + +#define GGML_MAX_DIMS 4 +#define GGML_MAX_NODES 4096 +#define GGML_MAX_PARAMS 16 +#define GGML_MAX_CONTEXTS 16 + +#ifdef __ARM_NEON +// we use the built-in 16-bit float type +typedef __fp16 ggml_fp16_t; +#else +typedef uint16_t ggml_fp16_t; +#endif + +float ggml_fp16_to_fp32(ggml_fp16_t x); +ggml_fp16_t ggml_fp32_to_fp16(float x); + +struct ggml_object; +struct ggml_context; + +enum ggml_type { + GGML_TYPE_I8, + GGML_TYPE_I16, + GGML_TYPE_I32, + GGML_TYPE_F16, + GGML_TYPE_F32, + GGML_TYPE_COUNT, +}; + +enum ggml_op { + GGML_OP_NONE = 0, + + GGML_OP_DUP, + GGML_OP_ADD, + GGML_OP_SUB, + GGML_OP_MUL, + GGML_OP_DIV, + GGML_OP_SQR, + GGML_OP_SQRT, + GGML_OP_SUM, + GGML_OP_MEAN, + GGML_OP_REPEAT, + GGML_OP_ABS, + GGML_OP_SGN, + GGML_OP_NEG, + GGML_OP_STEP, + GGML_OP_RELU, + GGML_OP_GELU, + GGML_OP_NORM, // normalize + + GGML_OP_MUL_MAT, + + GGML_OP_SCALE, + GGML_OP_CPY, + GGML_OP_RESHAPE, + GGML_OP_VIEW, + GGML_OP_PERMUTE, + GGML_OP_TRANSPOSE, + GGML_OP_GET_ROWS, + GGML_OP_DIAG_MASK_INF, + GGML_OP_SOFT_MAX, + GGML_OP_ROPE, + GGML_OP_CONV_1D_1S, + GGML_OP_CONV_1D_2S, + + GGML_OP_COUNT, +}; + +// n-dimensional tensor +struct ggml_tensor { + enum ggml_type type; + + int n_dims; + int ne[GGML_MAX_DIMS]; // number of elements + size_t nb[GGML_MAX_DIMS]; // stride in bytes: + // nb[0] = sizeof(type) + // nb[1] = nb[0] * ne[0] + padding + // nb[i] = nb[i-1] * ne[i-1] + + // compute data + enum ggml_op op; + + bool is_param; + + struct ggml_tensor * grad; + struct ggml_tensor * src0; + struct ggml_tensor * src1; + + // thread scheduling + int n_tasks; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; + + void * data; + char pad[8]; +}; + +// computation graph +struct ggml_cgraph { + int n_nodes; + int n_leafs; + int n_threads; + + size_t work_size; + struct ggml_tensor * work; + + struct ggml_tensor * nodes[GGML_MAX_NODES]; + struct ggml_tensor * grads[GGML_MAX_NODES]; + struct ggml_tensor * leafs[GGML_MAX_NODES]; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; +}; + +struct ggml_init_params { + // memory pool + size_t mem_size; // bytes + void * mem_buffer; // if NULL, memory will be allocated internally +}; + +int64_t ggml_time_ms(void); +int64_t ggml_time_us(void); +int64_t ggml_cycles(void); +int64_t ggml_cycles_per_ms(void); + +void ggml_print_object (const struct ggml_object * obj); +void ggml_print_objects(const struct ggml_context * ctx); + +int ggml_nelements(const struct ggml_tensor * tensor); +size_t ggml_nbytes (const struct ggml_tensor * tensor); + +size_t ggml_type_size (enum ggml_type type); +size_t ggml_element_size(const struct ggml_tensor * tensor); + +struct ggml_context * ggml_init(struct ggml_init_params params); +void ggml_free(struct ggml_context * ctx); + +size_t ggml_used_mem(const struct ggml_context * ctx); + +struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int *ne); + +struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0); + +struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1); + +struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1, + int ne2); + +struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int ne0, + int ne1, + int ne2, + int ne3); + +struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); + +struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); +struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); + +struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); +struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); + +float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); +void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); + + void * ggml_get_data (const struct ggml_tensor * tensor); +float * ggml_get_data_f32(const struct ggml_tensor * tensor); + +// +// operations on tensors with backpropagation +// + +struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// return scalar +// TODO: compute sum along rows +struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// mean along rows +struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// if a is the same shape as b, and a is not parameter, return a +// otherwise, return a new tensor: repeat(a) to fit in b +struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// TODO: double-check this computation is correct +struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// normalize along rows +// TODO: eps is hardcoded to 1e-5 for now +struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// A: m rows, n columns +// B: p rows, n columns (i.e. we transpose it internally) +// result is m columns, p rows +struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// +// operations on tensors without backpropagation +// + +// in-place, returns view(a) +struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// a -> b, return view(b) +struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// return view(a), b specifies the new shape +// TODO: when we start computing gradient, make a copy instead of view +struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// return view(a) +// TODO: when we start computing gradient, make a copy instead of view +struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1); + +// return view(a) +// TODO: when we start computing gradient, make a copy instead of view +struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + int ne2); + +// offset in bytes +struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + size_t offset); + +struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + size_t nb1, // row stride in bytes + size_t offset); + +struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3); + +// alias for ggml_permute(ctx, a, 1, 0, 2, 3) +struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a); + +struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// set elements above the diagonal to -INF +// in-place, returns view(a) +struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + +// in-place, returns view(a) +struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a); + +// rotary position embedding +// in-place, returns view(a) +// if mode == 1, skip n_past elements +// TODO: avoid creating a new tensor every time +struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode); + +// padding = 1 +// TODO: we don't support extra parameters for now +// that's why we are hard-coding the stride, padding, and dilation +// not great .. +struct ggml_tensor * ggml_conv_1d_1s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +struct ggml_tensor * ggml_conv_1d_2s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + +// +// automatic differentiation +// + +void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor); + +void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); + +struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); +struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); + +void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); +void ggml_graph_reset (struct ggml_cgraph * cgraph); + +// print info and performance information for the graph +void ggml_graph_print(const struct ggml_cgraph * cgraph); + +// dump the graph into a file using the dot format +void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); + +// +// optimization +// + +// optimization methods +enum ggml_opt_type { + GGML_OPT_ADAM, + GGML_OPT_LBFGS, +}; + +// linesearch methods +enum ggml_linesearch { + GGML_LINESEARCH_DEFAULT = 1, + + GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, + GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, + GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, +}; + +// optimization return values +enum ggml_opt_result { + GGML_OPT_OK = 0, + GGML_OPT_DID_NOT_CONVERGE, + GGML_OPT_NO_CONTEXT, + GGML_OPT_INVALID_WOLFE, + GGML_OPT_FAIL, + + GGML_LINESEARCH_FAIL = -128, + GGML_LINESEARCH_MINIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_ITERATIONS, + GGML_LINESEARCH_INVALID_PARAMETERS, +}; + +// optimization parameters +// +// see ggml.c (ggml_opt_default_params) for default values +// +struct ggml_opt_params { + enum ggml_opt_type type; + + int n_threads; + + // delta-based convergence test + // + // if past == 0 - disabled + // if past > 0: + // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) + // + int past; + float delta; + + // maximum number of iterations without improvement + // + // if 0 - disabled + // if > 0: + // assume convergence if no cost improvement in this number of iterations + // + int max_no_improvement; + + bool print_forward_graph; + bool print_backward_graph; + + union { + // ADAM parameters + struct { + int n_iter; + + float alpha; // learning rate + float beta1; + float beta2; + float eps; // epsilon for numerical stability + float eps_f; // epsilon for convergence test + float eps_g; // epsilon for convergence test + } adam; + + // LBFGS parameters + struct { + int m; // number of corrections to approximate the inv. Hessian + int n_iter; + int max_linesearch; + + float eps; // convergence tolerance + float ftol; // line search tolerance + float wolfe; + float min_step; + float max_step; + + enum ggml_linesearch linesearch; + } lbfgs; + }; +}; + +struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); + +// optimize the function defined by the tensor f +enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f); + +#ifdef __cplusplus +} +#endif diff --git a/main.cpp b/main.cpp new file mode 100644 index 00000000000..acbaa91cd65 --- /dev/null +++ b/main.cpp @@ -0,0 +1,2116 @@ +#include "ggml.h" + +// third-party utilities +// use your favorite implementations +#define DR_WAV_IMPLEMENTATION +#include "dr_wav.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +enum e_model { + MODEL_UNKNOWN, + MODEL_TINY, + MODEL_BASE, + MODEL_SMALL, + MODEL_MEDIUM, + MODEL_LARGE, +}; + +const size_t MB = 1024*1024; + +const std::map MEM_REQ_MODEL = { + { MODEL_TINY, 100ull*MB }, + { MODEL_BASE, 190ull*MB }, + { MODEL_SMALL, 610ull*MB }, + { MODEL_MEDIUM, 1900ull*MB }, + { MODEL_LARGE, 3600ull*MB }, +}; + +const std::map MEM_REQ_ENCODE = { + { MODEL_TINY, 80ull*MB }, + { MODEL_BASE, 128ull*MB }, + { MODEL_SMALL, 300ull*MB }, + { MODEL_MEDIUM, 680ull*MB }, + { MODEL_LARGE, 1100ull*MB }, +}; + +const std::map MEM_REQ_ENCODE_LAYER = { + { MODEL_TINY, 170ull*MB }, + { MODEL_BASE, 230ull*MB }, + { MODEL_SMALL, 350ull*MB }, + { MODEL_MEDIUM, 450ull*MB }, + { MODEL_LARGE, 570ull*MB }, +}; + +const std::map MEM_REQ_DECODE = { + { MODEL_TINY, 190ull*MB }, + { MODEL_BASE, 190ull*MB }, + { MODEL_SMALL, 190ull*MB }, + { MODEL_MEDIUM, 200ull*MB }, + { MODEL_LARGE, 200ull*MB }, +}; + +const std::map MEM_REQ_DECODE_LAYER = { + { MODEL_TINY, 32ull*MB }, + { MODEL_BASE, 44ull*MB }, + { MODEL_SMALL, 64ull*MB }, + { MODEL_MEDIUM, 84ull*MB }, + { MODEL_LARGE, 110ull*MB }, +}; + +const int SAMPLE_RATE = 16000; +const int N_FFT = 400; +const int N_MEL = 80; +const int HOP_LENGTH = 160; +const int CHUNK_SIZE = 30; // seconds + +struct whisper_mel { + int n_len; + int n_mel; + + std::vector data; +}; + +struct whisper_filters { + int32_t n_mel; + int32_t n_fft; + + std::vector data; +}; + +struct whisper_vocab { + using id = int32_t; + using token = std::string; + + int n_vocab = 51864; + + std::map token_to_id; + std::map id_to_token; + + id token_eot = 50256; + id token_sot = 50257; + id token_prev = 50360; + id token_solm = 50361; // ?? + id token_beg = 50363; + + bool is_multilingual() const { + return n_vocab == 51865; + } +}; + +// command-line parameters +struct whisper_params { + int32_t seed = -1; // RNG seed + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); + + int32_t max_tokens_per_iter = 64; + + bool verbose = false; + bool print_special_tokens = false; + + std::string model = "models/whisper-tiny.en/ggml-model.bin"; // model path + + std::string fname_inp = "default.wav"; +}; + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params); + +bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { + for (int i = 1; i < argc; i++) { + std::string arg = argv[i]; + + if (arg == "-s" || arg == "--seed") { + params.seed = std::stoi(argv[++i]); + } else if (arg == "-t" || arg == "--threads") { + params.n_threads = std::stoi(argv[++i]); + } else if (arg == "-T" || arg == "--tokens") { + params.max_tokens_per_iter = std::stoi(argv[++i]); + } else if (arg == "-v" || arg == "--verbose") { + params.verbose = true; + } else if (arg == "-ps" || arg == "--print_special") { + params.print_special_tokens = true; + } else if (arg == "-m" || arg == "--model") { + params.model = argv[++i]; + } else if (arg == "-f" || arg == "--file") { + params.fname_inp = argv[++i]; + } else if (arg == "-h" || arg == "--help") { + whisper_print_usage(argc, argv, params); + exit(0); + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); + } + } + + return true; +} + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter); + fprintf(stderr, " -v, --verbose verbose output\n"); + fprintf(stderr, " -ps, --print_special print special tokens\n"); + fprintf(stderr, " -m FNAME, --model FNAME\n"); + fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); + fprintf(stderr, " -f FNAME, --file FNAME\n"); + fprintf(stderr, " input WAV file path (default: %s)\n", params.fname_inp.c_str()); + fprintf(stderr, "\n"); +} + + +// medium +// hparams: { +// 'n_mels': 80, +// 'n_vocab': 51864, +// 'n_audio_ctx': 1500, +// 'n_audio_state': 1024, +// 'n_audio_head': 16, +// 'n_audio_layer': 24, +// 'n_text_ctx': 448, +// 'n_text_state': 1024, +// 'n_text_head': 16, +// 'n_text_layer': 24 +// } +// +// default hparams (Whisper tiny) +struct whisper_hparams { + int32_t n_vocab = 51864; + int32_t n_audio_ctx = 1500; + int32_t n_audio_state = 384; + int32_t n_audio_head = 6; + int32_t n_audio_layer = 4; + int32_t n_text_ctx = 448; + int32_t n_text_state = 384; + int32_t n_text_head = 6; + int32_t n_text_layer = 4; + int32_t n_mels = 80; + int32_t f16 = 1; +}; + +// audio encoding layer +struct whisper_layer_encoder { + // encoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // encoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // encoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // encoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // encoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // encoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // encoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // encoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +// token decoding layer +struct whisper_layer_decoder { + // decoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // decoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // decoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // decoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // decoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // decoder.blocks.*.cross_attn_ln + struct ggml_tensor * cross_attn_ln_0_w; + struct ggml_tensor * cross_attn_ln_0_b; + + // decoder.blocks.*.cross_attn.out + struct ggml_tensor * cross_attn_ln_1_w; + struct ggml_tensor * cross_attn_ln_1_b; + + // decoder.blocks.*.cross_attn.query + struct ggml_tensor * cross_attn_q_w; + struct ggml_tensor * cross_attn_q_b; + + // decoder.blocks.*.cross_attn.key + struct ggml_tensor * cross_attn_k_w; + + // decoder.blocks.*.cross_attn.value + struct ggml_tensor * cross_attn_v_w; + struct ggml_tensor * cross_attn_v_b; + + // decoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // decoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // decoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +struct whisper_model { + e_model type = MODEL_UNKNOWN; + + whisper_hparams hparams; + whisper_filters filters; + + // encoder.positional_embedding + struct ggml_tensor * e_pe; + + // encoder.conv1 + struct ggml_tensor * e_conv_1_w; + struct ggml_tensor * e_conv_1_b; + + // encoder.conv2 + struct ggml_tensor * e_conv_2_w; + struct ggml_tensor * e_conv_2_b; + + // encoder.ln_post + struct ggml_tensor * e_ln_w; + struct ggml_tensor * e_ln_b; + + // decoder.positional_embedding + struct ggml_tensor * d_pe; // DD + + // decoder.token_embedding + struct ggml_tensor * d_te; // DD + + // decoder.ln + struct ggml_tensor * d_ln_w; // DD + struct ggml_tensor * d_ln_b; // DD + + std::vector layers_encoder; + std::vector layers_decoder; + + // key + value memory + struct ggml_tensor * memory_k; + struct ggml_tensor * memory_v; + + struct ggml_tensor * memory_cross_k; + struct ggml_tensor * memory_cross_v; + + // + struct ggml_context * ctx; + std::map tensors; +}; + +// load the model from a ggml file +// +// file format: +// +// - hparams +// - pre-computed mel filters +// - vocab +// - weights +// +// see the convert-pt-to-ggml.py script for details +// +bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) { + printf("%s: loading model from '%s'\n", __func__, fname.c_str()); + + auto fin = std::ifstream(fname, std::ios::binary); + if (!fin) { + fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); + return false; + } + + // verify magic + { + uint32_t magic; + fin.read((char *) &magic, sizeof(magic)); + if (magic != 0x67676d6c) { + fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); + return false; + } + } + + //load hparams + { + auto & hparams = model.hparams; + + fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); + fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); + fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); + fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); + fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); + fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); + fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); + fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); + fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); + fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); + fin.read((char *) &hparams.f16, sizeof(hparams.f16)); + + assert(hparams.n_text_state == hparams.n_audio_state); + + if (hparams.n_audio_layer == 4) { + model.type = e_model::MODEL_TINY; + } + + if (hparams.n_audio_layer == 6) { + model.type = e_model::MODEL_BASE; + } + + if (hparams.n_audio_layer == 12) { + model.type = e_model::MODEL_SMALL; + } + + if (hparams.n_audio_layer == 24) { + model.type = e_model::MODEL_MEDIUM; + } + + if (hparams.n_audio_layer == 32) { + model.type = e_model::MODEL_LARGE; + } + + printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); + printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); + printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); + printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); + printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); + printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); + printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); + printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); + printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); + printf("%s: n_mels = %d\n", __func__, hparams.n_mels); + printf("%s: f16 = %d\n", __func__, hparams.f16); + printf("%s: type = %d\n", __func__, model.type); + + const size_t mem_required = + MEM_REQ_MODEL.at(model.type) + + MEM_REQ_ENCODE.at(model.type) + + MEM_REQ_ENCODE_LAYER.at(model.type) + + MEM_REQ_DECODE.at(model.type) + + MEM_REQ_DECODE_LAYER.at(model.type); + + printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); + } + + // load mel filters + { + auto & filters = model.filters; + + fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); + fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); + + filters.data.resize(filters.n_mel * filters.n_fft); + fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); + } + + // load vocab + { + int32_t n_vocab = 0; + fin.read((char *) &n_vocab, sizeof(n_vocab)); + + //if (n_vocab != model.hparams.n_vocab) { + // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", + // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); + // return false; + //} + + std::string word; + for (int i = 0; i < n_vocab; i++) { + uint32_t len; + fin.read((char *) &len, sizeof(len)); + + word.resize(len); + fin.read((char *) word.data(), len); + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + + //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); + } + + vocab.n_vocab = model.hparams.n_vocab; + if (vocab.is_multilingual()) { + vocab.token_eot++; + vocab.token_sot++; + vocab.token_prev++; + vocab.token_solm++; + vocab.token_beg++; + } + + if (n_vocab < model.hparams.n_vocab) { + printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); + for (int i = n_vocab; i < model.hparams.n_vocab; i++) { + if (i > vocab.token_beg) { + word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; + } else if (i == vocab.token_eot) { + word = "[_EOT_]"; + } else if (i == vocab.token_sot) { + word = "[_SOT_]"; + } else if (i == vocab.token_prev) { + word = "[_PREV_]"; + } else if (i == vocab.token_beg) { + word = "[_BEG_]"; + } else { + word = "[_extra_token_" + std::to_string(i) + "]"; + } + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + } + } + + // for the big tensors, we have the option to store the data in 16-bit floats + // in order to save memory and also to speed up the computation + const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; + + auto & ctx = model.ctx; + + size_t ctx_size = 0; + + { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + // encoder + { + // TODO: F16 .. maybe not? + ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; + + ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b + + ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b + + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; + } + + // decoder + { + // TODO: F16 .. maybe not? + ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; + + ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; + + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; + } + + // encoder layers + { + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + } + + // decoder layers + { + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + // + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b + } + + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_k + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_v + + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_k + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_v + + ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + } + + // create the ggml context + { + struct ggml_init_params params = { + .mem_size = ctx_size, + .mem_buffer = NULL, + }; + + model.ctx = ggml_init(params); + if (!model.ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + + // prepare memory for the weights + { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + model.layers_encoder.resize(n_audio_layer); + model.layers_decoder.resize(n_text_layer); + + // encoder + { + model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); + + model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); + model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); + model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.positional_embedding"] = model.e_pe; + + model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; + model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; + + model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; + model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; + + model.tensors["encoder.ln_post.weight"] = model.e_ln_w; + model.tensors["encoder.ln_post.bias"] = model.e_ln_b; + + for (int i = 0; i < n_audio_layer; ++i) { + auto & layer = model.layers_encoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + } + } + + // decoder + { + model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); + + model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); + + model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.positional_embedding"] = model.d_pe; + + model.tensors["decoder.token_embedding.weight"] = model.d_te; + + model.tensors["decoder.ln.weight"] = model.d_ln_w; + model.tensors["decoder.ln.bias"] = model.d_ln_b; + + for (int i = 0; i < n_text_layer; ++i) { + auto & layer = model.layers_decoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; + } + } + } + + // key + value memory + { + const auto & hparams = model.hparams; + + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + const int n_text_ctx = hparams.n_text_ctx; + + { + const int n_mem = n_text_layer*n_text_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + } + + { + const int n_audio_ctx = hparams.n_audio_ctx; + + const int n_mem = n_text_layer*n_audio_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + } + + const size_t memory_size = + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); + + printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); + } + + // load weights + { + size_t total_size = 0; + + while (true) { + int32_t n_dims; + int32_t length; + int32_t ftype; + + fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); + fin.read(reinterpret_cast(&length), sizeof(length)); + fin.read(reinterpret_cast(&ftype), sizeof(ftype)); + + if (fin.eof()) { + break; + } + + int32_t nelements = 1; + int32_t ne[3] = { 1, 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + nelements *= ne[i]; + } + + std::string name(length, 0); + fin.read(&name[0], length); + + if (model.tensors.find(name.data()) == model.tensors.end()) { + fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); + return false; + } + + auto tensor = model.tensors[name.data()]; + if (ggml_nelements(tensor) != nelements) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); + return false; + } + + if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", + __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); + return false; + } + + const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); + + if (nelements*bpe != ggml_nbytes(tensor)) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); + return false; + } + + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + + //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); + total_size += ggml_nbytes(tensor); + } + + printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); + } + + fin.close(); + + return true; +} + +// evaluate the encoder +// +// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder +// part of the transformer model and returns the encoded features +// +// - model: the model +// - n_threads: number of threads to use +// - mel_offset: offset in the mel spectrogram (i.e. audio offset) +// - mel_inp: input mel spectrogram +// - features: output encoded features +// +bool whisper_encode( + const whisper_model & model, + const int n_threads, + const int mel_offset, + const whisper_mel & mel_inp, + std::vector & features) { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_audio_ctx; + const int n_state = hparams.n_audio_state; + const int n_head = hparams.n_audio_head; + const int n_layer = hparams.n_audio_layer; + + const int N = n_ctx; + + const int n_mels = hparams.n_mels; + assert(mel_inp.n_mel == n_mels); + + struct ggml_init_params params; + + { + static size_t buf_size = MEM_REQ_ENCODE.at(model.type); + static void * buf = malloc(buf_size); + + params = { + .mem_size = buf_size, + .mem_buffer = buf, + }; + } + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); + assert(mel->type == GGML_TYPE_F32); + { + float * dst = (float *) mel->data; + memset(dst, 0, ggml_nbytes(mel)); + + const int i0 = std::min(mel_offset, mel_inp.n_len); + const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); + + for (int j = 0; j < mel_inp.n_mel; ++j) { + for (int i = i0; i < i1; ++i) { + dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; + } + } + } + + struct ggml_tensor * cur; + + // convolution + gelu + { + cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_1_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + + cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_2_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + } + + cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_encoder[il]; + + // create separate context for each layer to reduce memory usage + + struct ggml_init_params paramsL; + { + static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type); + static void * buf = malloc(buf_size); + + paramsL = { + .mem_size = buf_size, + .mem_buffer = buf, + }; + } + + struct ggml_context * ctxL = ggml_init(paramsL); + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Kcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // F16 ! + 0, 2, 1, 3); + + //// BLAS attempt + //struct ggml_tensor * KQ = + // ggml_mul_mat(ctxL, + // ggml_cpy(ctxL, K, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)), + // ggml_cpy(ctxL, Q, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head))); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * K = + // ggml_cpy(ctxL, + // ggml_permute(ctxL, + // ggml_reshape_3d(ctxL, + // Kcur, + // n_state/n_head, n_head, N), + // 1, 2, 0, 3), + // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) + // ); + + //// K * Q + //struct ggml_tensor * KQ = ggml_mul_mat(ctxL, ggml_transpose(ctxL, K), Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); + + //struct ggml_tensor * V_trans = + // ggml_permute(ctxL, + // ggml_cpy(ctxL, + // Vcur, + // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + // 1, 2, 0, 3); + + //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * V = + ggml_cpy(ctxL, + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + Vcur, + n_state/n_head, n_head, N), + 0, 2, 1, 3), + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) // F16 ! + ); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctxL, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = mlp_ln_w*cur + mlp_ln_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + // cur = ln_f_g*cur + ln_f_b + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.e_ln_w, cur), + cur), + ggml_repeat(ctx0, model.e_ln_b, cur)); + } + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + + //ggml_graph_print(&gf); + } + + // cur + //{ + // printf("ne0 = %d\n", cur->ne[0]); + // printf("ne1 = %d\n", cur->ne[1]); + // for (int i = 0; i < 10; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("... "); + // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("\n"); + //} + + // pre-compute cross-attention memory + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // TODO: hack to disconnect the encoded features from the previous graph + cur->op = GGML_OP_NONE; + cur->src0 = NULL; + cur->src1 = NULL; + + for (int il = 0; il < model.hparams.n_text_layer; ++il) { + auto & layer = model.layers_decoder[il]; + + struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, + layer.cross_attn_k_w, + cur); + + Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, + layer.cross_attn_v_w, + cur); + + Vcross = ggml_add(ctx0, + ggml_repeat(ctx0, + layer.cross_attn_v_b, + Vcross), + Vcross); + + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); + } + + ggml_graph_compute(ctx0, &gf); + } + + //////////////////////////////////////////////////////////////////////////// + + // output the features + assert(cur->type == GGML_TYPE_F32); + features.resize(cur->ne[0]*cur->ne[1]); + memcpy(features.data(), cur->data, features.size()*sizeof(float)); + + //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); + + ggml_free(ctx0); + + return true; +} + +// evaluate the decoder +// +// given text prompt + audio features -> predicts the probabilities for the next token +// +// - model: the model +// - n_threads: number of threads to use +// - n_past: prompt length +// - prompt: text prompt +// - logits_out: output logits +// - probs_out: output probabilities +// +bool whisper_decode( + const whisper_model & model, + const int n_threads, + const int n_past, + const std::vector & prompt, + std::vector & logits_out, + std::vector & probs_out) { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_text_ctx; + const int n_state = hparams.n_text_state; + const int n_head = hparams.n_text_head; + const int n_layer = hparams.n_text_layer; + + const int N = prompt.size(); + const int M = hparams.n_audio_ctx; + + struct ggml_init_params params; + + { + static size_t buf_size = MEM_REQ_DECODE.at(model.type); + static void * buf = malloc(buf_size); + + params = { + .mem_size = buf_size, + .mem_buffer = buf, + }; + } + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, prompt.data(), N*ggml_element_size(embd)); + + struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + for (int i = 0; i < N; ++i) { + ((int32_t *) position->data)[i] = n_past + i; + } + + // wte + wpe + struct ggml_tensor * cur = + ggml_add(ctx0, + ggml_get_rows(ctx0, model.d_te, embd), + ggml_get_rows(ctx0, model.d_pe, position)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_decoder[il]; + + struct ggml_init_params paramsL; + + { + static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type); + static void * buf = malloc(buf_size); + + paramsL = { + .mem_size = buf_size, + .mem_buffer = buf, + }; + } + + struct ggml_context * ctxL = ggml_init(paramsL); + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // store key and value to memory + { + struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); + } + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), + n_state/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); + + struct ggml_tensor * V_trans = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), + n_state/n_head, n_head, n_past + N), + 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); + + // norm + { + cur = ggml_norm(ctxL, inpCA); // Note we use inpCA here + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); + } + + // cross-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.cross_attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.cross_attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // Kcross is already scaled + struct ggml_tensor * Kcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), + n_state/n_head, n_head, M); + + struct ggml_tensor * Vcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), + n_state/n_head, n_head, M); + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + // no masking for cross-attention + //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); + + struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_state, N) + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.cross_attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), + cur); + } + + + // add the input + cur = ggml_add(ctxL, cur, inpCA); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = ln_2_g*cur + ln_2_b + // [ 768, N] + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + if (N > 1) { + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + } + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.d_ln_w, cur), + cur), + ggml_repeat(ctx0, model.d_ln_b, cur)); + } + + struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); + + // logits -> probs + cur = ggml_dup(ctx0, logits); + cur = ggml_soft_max(ctx0, cur); // in-place + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + } + + logits_out.resize(N*n_vocab); + memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); + + probs_out.resize(N*n_vocab); + memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); + + //if (N > 1) { + // const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; + // printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); + // printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); + //} + + ggml_free(ctx0); + + return true; +} + +// the most basic sampling scheme - select the top token +// TODO: beam search +// TODO: temperature +whisper_vocab::id whisper_sample_best( + const whisper_vocab & vocab, + const float * probs, + double temp, + int offset = 0) { + int n_logits = vocab.id_to_token.size(); + + std::vector> probs_id; + probs_id.reserve(n_logits); + + for (int i = offset; i < n_logits; i++) { + probs_id.push_back(std::make_pair(probs[i], i)); + } + + const int top_k = 10; + + // find the top K tokens + std::partial_sort( + probs_id.begin(), + probs_id.begin() + top_k, probs_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + probs_id.resize(top_k); + + //printf("\n"); + //for (int i = 0; i < (int) probs_id.size(); i++) { + // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); + //} + + int res = 0; + while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) { + res++; + } + + return probs_id[res].second; +} + +// Cooley-Tukey FFT +// poor man's implmentation - use something better +// input is real-valued +// output is complex-valued +void fft(const std::vector & in, std::vector & out) { + out.resize(in.size()*2); + + int N = in.size(); + + if (N == 1) { + out[0] = in[0]; + out[1] = 0; + return; + } + + std::vector even; + std::vector odd; + + for (int i = 0; i < N; i++) { + if (i % 2 == 0) { + even.push_back(in[i]); + } else { + odd.push_back(in[i]); + } + } + + std::vector even_fft; + std::vector odd_fft; + + fft(even, even_fft); + fft(odd, odd_fft); + + for (int k = 0; k < N/2; k++) { + float theta = 2*M_PI*k/N; + + float re = cos(theta); + float im = -sin(theta); + + float re_odd = odd_fft[2*k + 0]; + float im_odd = odd_fft[2*k + 1]; + + out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; + out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; + + out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; + out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; + } +} + +// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 +bool log_mel_spectrogram( + const std::vector sf32, + const int sample_rate, + const int fft_size, + const int fft_step, + const int n_mel, + const int n_threads, + const whisper_filters & filters, + whisper_mel & mel) { + const int n_sample = sf32.size(); + const float * samples = sf32.data(); + + // Hanning window + std::vector hann; + hann.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); + } + + mel.n_mel = n_mel; + mel.n_len = (n_sample)/fft_step; + mel.data.resize(mel.n_mel*mel.n_len); + + const int n_fft = 1 + fft_size/2; + + printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len); + printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate); + + std::vector workers(n_threads); + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw] = std::thread([&](int ith) { + std::vector fft_in; + fft_in.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + fft_in[i] = 0.0; + } + + std::vector fft_out; + fft_out.resize(2*fft_size); + + for (int i = ith; i < mel.n_len; i += n_threads) { + const int offset = i*fft_step; + + // apply Hanning window + for (int j = 0; j < fft_size; j++) { + if (offset + j < n_sample) { + fft_in[j] = hann[j]*samples[offset + j]; + } else { + fft_in[j] = 0.0; + } + } + + // FFT -> mag^2 + fft(fft_in, fft_out); + + for (int j = 0; j < n_fft; j++) { + fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); + } + + // mel spectrogram + for (int j = 0; j < mel.n_mel; j++) { + double sum = 0.0; + + for (int k = 0; k < n_fft; k++) { + sum += fft_out[k]*filters.data[j*n_fft + k]; + } + if (sum < 1e-10) { + sum = 1e-10; + } + + sum = log10(sum); + + mel.data[j*mel.n_len + i] = sum; + } + } + }, iw); + } + + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw].join(); + } + + // clamping and normalization + double mmax = -1e20; + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] > mmax) { + mmax = mel.data[i]; + } + } + + mmax -= 8.0; + + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] < mmax) { + mel.data[i] = mmax; + } + + mel.data[i] = (mel.data[i] + 4.0)/4.0; + } + + return true; +} + +int main(int argc, char ** argv) { + const int64_t t_main_start_us = ggml_time_us(); + + whisper_params params; + params.model = "models/whisper-tiny.en/ggml-model.bin"; + + if (whisper_params_parse(argc, argv, params) == false) { + return 1; + } + + if (params.seed < 0) { + params.seed = time(NULL); + } + + // Model loading + + //printf("%s: seed = %d\n", __func__, params.seed); + + int64_t t_load_us = 0; + int64_t t_mel_us = 0; + int64_t t_sample_us = 0; + int64_t t_encode_us = 0; + int64_t t_decode_us = 0; + + whisper_vocab vocab; + whisper_model model; + + // load the model + { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_model_load(params.model, model, vocab)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); + return 1; + } + + t_load_us = ggml_time_us() - t_start_us; + } + + // WAV input + std::vector pcmf32; + { + drwav wav; + if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) { + fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str()); + return 2; + } + + if (wav.channels != 1) { + fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str()); + return 3; + } + + if (wav.sampleRate != SAMPLE_RATE) { + fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str()); + return 4; + } + + if (wav.bitsPerSample != 16) { + fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str()); + return 5; + } + + std::vector pcm16; + pcm16.resize(wav.totalPCMFrameCount); + drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data()); + drwav_uninit(&wav); + + // convert to float + pcmf32.resize(pcm16.size()); + for (size_t i = 0; i < pcm16.size(); i++) { + pcmf32[i] = float(pcm16[i])/32768.0f; + } + } + + // compute log mel spectrogram + whisper_mel mel_inp; + { + const int64_t t_start_us = ggml_time_us(); + + log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp); + + t_mel_us = ggml_time_us() - t_start_us; + } + + std::vector prompt_past = { }; + + // main loop + int seek = 0; + while (true) { + if (seek >= mel_inp.n_len) { + break; + } + + // encode audio features starting at offset seek + std::vector features; + { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + t_encode_us = ggml_time_us() - t_start_us; + } + + std::vector probs; + std::vector logits; + + // SOT + // ref: https://github.com/openai/whisper/blob/15ab54826343c27cfaf44ce31e9c8fb63d0aa775/whisper/decoding.py#L506-L526 + // TODO: use different initial tokens for different tasks + std::vector prompt = { vocab.token_sot }; + + int n_past = 0; + + if (prompt_past.size() > 0) { + int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size())); + + prompt = { vocab.token_prev }; + prompt.insert(prompt.end(), prompt_past.end() - n_take, prompt_past.end()); + prompt.push_back(vocab.token_sot); + + prompt_past.clear(); + prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - 1); + } + + bool done = false; + int seek_delta = 100*CHUNK_SIZE; + whisper_vocab::id last_id = 0; + + //for (int i = 0; i < prompt.size(); i++) { + // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str()); + //} + + printf("\n"); + for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) { + // decode + if (prompt.size() > 0) { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + t_decode_us += ggml_time_us() - t_start_us; + } + + n_past += prompt.size(); + prompt.clear(); + + { + // sample next token + const float temp = 1.0; // TODO + + const int n_vocab = model.hparams.n_vocab; + + whisper_vocab::id id = 0; + + { + const int64_t t_start_sample_us = ggml_time_us(); + + id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0); + + t_sample_us += ggml_time_us() - t_start_sample_us; + } + + // end of text token + if (id == vocab.token_eot) { + break; + } + + // 2 consecutive time tokens + if (id > vocab.token_beg && last_id > vocab.token_beg) { + seek_delta = 2*(id - vocab.token_beg); + done = true; + } + last_id = id; + + // add it to the context + prompt.push_back(id); + prompt_past.push_back(id); + } + + // display text + for (auto id : prompt) { + if (params.print_special_tokens == false && id >= vocab.token_eot) { + continue; + } + printf("%s", vocab.id_to_token[id].c_str()); + } + fflush(stdout); + + if (done) { + break; + } + } + + seek += seek_delta; + } + + // report timing + { + const int64_t t_main_end_us = ggml_time_us(); + + printf("\n\n"); + printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); + printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f); + printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); + printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer); + printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f); + printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); + } + + ggml_free(model.ctx); + + return 0; +} diff --git a/models/.gitignore b/models/.gitignore new file mode 100644 index 00000000000..a8a0dcec447 --- /dev/null +++ b/models/.gitignore @@ -0,0 +1 @@ +*.bin diff --git a/samples/.gitignore b/samples/.gitignore new file mode 100644 index 00000000000..72e8ffc0db8 --- /dev/null +++ b/samples/.gitignore @@ -0,0 +1 @@ +* diff --git a/samples/jfk.wav b/samples/jfk.wav new file mode 100644 index 00000000000..3184d372cd2 Binary files /dev/null and b/samples/jfk.wav differ