From 69b850393519765e49928cb70db62c925060a552 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 10 Apr 2023 22:28:54 +0300 Subject: [PATCH] ggml : backport llama.cpp updates (close #709) - About x2 overall performance improvement on Apple Silicon - Results should now be the same for different number of threads (not tested) --- ggml.c | 2684 +++++++++++++++++++++++++++++---------------------- ggml.h | 113 ++- whisper.cpp | 133 +-- 3 files changed, 1693 insertions(+), 1237 deletions(-) diff --git a/ggml.c b/ggml.c index ba0441940f8..3942379ecdd 100644 --- a/ggml.c +++ b/ggml.c @@ -16,6 +16,7 @@ #include #include #include +#include #include #include @@ -79,20 +80,22 @@ static int sched_yield (void) { typedef void* thread_ret_t; #endif -#ifdef __HAIKU__ -#define static_assert(cond, msg) _Static_assert(cond, msg) +// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512 +#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__)) +#ifndef __FMA__ +#define __FMA__ +#endif +#ifndef __F16C__ +#define __F16C__ +#endif +#ifndef __SSE3__ +#define __SSE3__ #endif - -#define GGML_MLOCK_SUPPORT 0 - -#ifdef __has_include - #if __has_include() - #undef GGML_MLOCK_SUPPORT - #define GGML_MLOCK_SUPPORT 1 - #include - #endif #endif +#ifdef __HAIKU__ +#define static_assert(cond, msg) _Static_assert(cond, msg) +#endif /*#define GGML_PERF*/ #define GGML_DEBUG 0 @@ -150,10 +153,10 @@ typedef double ggml_float; // #include -#define GGML_COMPUTE_FP16_TO_FP32(x) (x) +#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x)) #define GGML_COMPUTE_FP32_TO_FP16(x) (x) -#define GGML_FP16_TO_FP32(x) (x) +#define GGML_FP16_TO_FP32(x) ((float) (x)) #define GGML_FP32_TO_FP16(x) (x) #else @@ -172,8 +175,13 @@ typedef double ggml_float; #ifdef __F16C__ +#ifdef _MSC_VER +#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x))) +#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0) +#else #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x) #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0) +#endif #elif defined(__POWER9_VECTOR__) @@ -322,7 +330,7 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { // note: do not use these inside ggml.c // these are meant to be used via the ggml.h API float ggml_fp16_to_fp32(ggml_fp16_t x) { - return GGML_FP16_TO_FP32(x); + return (float) GGML_FP16_TO_FP32(x); } ggml_fp16_t ggml_fp32_to_fp16(float x) { @@ -443,22 +451,65 @@ static inline __m128i packNibbles( __m256i bytes ) __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); return _mm_packus_epi16( r0, r1 ); } +#elif __AVX__ +static inline __m128i bytesFromNibbles( const uint8_t* rsi ) +{ + // Load 8 bytes from memory + __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi ); + + // Expand bytes into uint16_t values + __m128i bytes = _mm_cvtepu8_epi16( tmp ); + + // Unpack values into individual bytes + const __m128i lowMask = _mm_set1_epi8( 0xF ); + __m128i high = _mm_andnot_si128( lowMask, bytes ); + __m128i low = _mm_and_si128( lowMask, bytes ); + high = _mm_slli_epi16( high, 4 ); + bytes = _mm_or_si128( low, high ); + return bytes; +} + +static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) +{ + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh + const __m128i lowByte = _mm_set1_epi16( 0xFF ); + __m128i high = _mm_andnot_si128( lowByte, bytes1 ); + __m128i low = _mm_and_si128( lowByte, bytes1 ); + high = _mm_srli_epi16( high, 4 ); + bytes1 = _mm_or_si128( low, high ); + high = _mm_andnot_si128( lowByte, bytes2 ); + low = _mm_and_si128( lowByte, bytes2 ); + high = _mm_srli_epi16( high, 4 ); + bytes2 = _mm_or_si128( low, high ); + + return _mm_packus_epi16( bytes1, bytes2); +} #endif // method 5 // blocks of QK elements // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors) +typedef struct { + float d; // delta + uint8_t qs[QK / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding"); + +// method 4 +// blocks of QK elements +// represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors) +typedef struct { + float d; + float m; + uint8_t qs[QK / 2]; // nibbles / quants +} block_q4_1; +static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding"); // reference implementation for deterministic creation of model files -static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) { +static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { assert(k % QK == 0); const int nb = k / QK; - const size_t bs = sizeof(float) + QK/2; - - uint8_t * restrict pd = ((uint8_t *)y + 0*bs); - uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float)); - uint8_t pp[QK/2]; for (int i = 0; i < nb; i++) { @@ -472,39 +523,30 @@ static void quantize_row_q4_0_reference(const float * restrict x, void * restric const float d = amax / ((1 << 3) - 1); const float id = d ? 1.0f/d : 0.0f; - *(float *)pd = d; - pd += bs; + y[i].d = d; for (int l = 0; l < QK; l += 2) { const float v0 = x[i*QK + l + 0]*id; const float v1 = x[i*QK + l + 1]*id; - const uint8_t vi0 = ((int8_t) (round(v0))) + 8; - const uint8_t vi1 = ((int8_t) (round(v1))) + 8; + const uint8_t vi0 = (int8_t)roundf(v0) + 8; + const uint8_t vi1 = (int8_t)roundf(v1) + 8; - assert(vi0 >= 0 && vi0 < 16); - assert(vi1 >= 0 && vi1 < 16); + assert(vi0 < 16); + assert(vi1 < 16); pp[l/2] = vi0 | (vi1 << 4); } - memcpy(pb, pp, sizeof(pp)); - pb += bs; + memcpy(y[i].qs, pp, sizeof(pp)); } } -void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { +static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) { assert(k % QK == 0); - -#if defined(__ARM_NEON) || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__) const int nb = k / QK; - const size_t bs = sizeof(float) + QK/2; - uint8_t * restrict pd = ((uint8_t *)y + 0*bs); - uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float)); - - uint8_t pp[QK/2]; -#endif + block_q4_0 * restrict y = vy; #if defined(__POWER9_VECTOR__) const vector float v85 = vec_splats(8.5f); @@ -532,10 +574,10 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { const float d = amax / ((1 << 3) - 1); const float id = d ? 1.0/d : 0.0; - *(float *)pd = d; - pd += bs; + y[i].d = d; const vector float vid = vec_splats(id); + uint8_t * restrict pb = y[i].qs; for (int l = 0; l < 8; l++) { const vector float vf = vec_madd(srcv[l], vid, v85); const vector signed int vi = vec_signed(vf); @@ -543,14 +585,9 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4); pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4); } - - //memcpy(pb, pp, sizeof(pp)); - pb += bs; } #elif __ARM_NEON for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - float32x4_t srcv [8]; float32x4_t asrcv[8]; float32x4_t amaxv[8]; @@ -562,27 +599,21 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); - amax = MAX( - MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)), - MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3))); + const float amax = vmaxvq_f32(amaxv[0]); const float d = amax / ((1 << 3) - 1); - const float id = d ? 1.0/d : 0.0; + const float id = d ? 1.0f/d : 0.0f; - *(float *)pd = d; - pd += bs; + y[i].d = d; for (int l = 0; l < 8; l++) { const float32x4_t v = vmulq_n_f32(srcv[l], id); const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f)); const int32x4_t vi = vcvtq_s32_f32(vf); - pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); - pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); + y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); + y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); } - - memcpy(pb, pp, sizeof(pp)); - pb += bs; } #elif defined(__AVX2__) for (int i = 0; i < nb; i++) { @@ -607,8 +638,7 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { // Quantize these floats const float d = maxScalar / 7.0f; - *(float *)pd = d; - pd += bs; + y[i].d = d; const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); @@ -648,8 +678,81 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { // Compress the vector into 4 bit/value, and store __m128i res = packNibbles( i0 ); - _mm_storeu_si128( ( __m128i* )pb, res ); - pb += bs; + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); + } +#elif defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 7.0f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ] + const __m128i off = _mm_set1_epi8( 8); + ni0 = _mm_add_epi8( ni0, off ); + ni4 = _mm_add_epi8( ni4, off ); + + // Compress the vector into 4 bit/value, and store + __m128i res = packNibbles( ni0, ni4 ); + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); } #elif defined(__wasm_simd128__) for (int i = 0; i < nb; i++) { @@ -673,20 +776,16 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { const float d = amax / ((1 << 3) - 1); const float id = d ? 1.0/d : 0.0; - *(float *)pd = d; - pd += bs; + y[i].d = d; for (int l = 0; l < 8; l++) { const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id)); const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f)); const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf); - pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4); - pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4); + y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4); + y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4); } - - memcpy(pb, pp, sizeof(pp)); - pb += bs; } #else // scalar @@ -694,18 +793,11 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { #endif } -// method 4 -// blocks of QK elements -// represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors) -void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) { +static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) { assert(k % QK == 0); - const int nb = k / QK; - const size_t bs = 2*sizeof(float) + QK/2; - uint8_t * restrict pd = ((uint8_t *)y + 0*bs); - uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float)); - uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float)); + block_q4_1 * restrict y = vy; uint8_t pp[QK/2]; @@ -722,45 +814,161 @@ void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) { const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; - *(float *)pm = min; - *(float *)pd = d; - pm += bs; - pd += bs; + y[i].d = d; + y[i].m = min; for (int l = 0; l < QK; l += 2) { const float v0 = (x[i*QK + l + 0] - min)*id; const float v1 = (x[i*QK + l + 1] - min)*id; - const uint8_t vi0 = round(v0); - const uint8_t vi1 = round(v1); + const uint8_t vi0 = roundf(v0); + const uint8_t vi1 = roundf(v1); - assert(vi0 >= 0 && vi0 < 16); - assert(vi1 >= 0 && vi1 < 16); + assert(vi0 < 16); + assert(vi1 < 16); pp[l/2] = vi0 | (vi1 << 4); } - memcpy(pb, pp, sizeof(pp)); - pb += bs; + memcpy(y[i].qs, pp, sizeof(pp)); } } -// TODO: vectorize -void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) { +static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) { assert(k % QK == 0); const int nb = k / QK; - const size_t bs = sizeof(float) + QK/2; - const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs); - const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float)); + block_q4_1 * restrict y = vy; + +#if defined(__AVX2__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max for the block + __m256 vmax; + vmax = _mm256_max_ps( v0, v1 ); + vmax = _mm256_max_ps( vmax, v2 ); + vmax = _mm256_max_ps( vmax, v3 ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Compute min for the block + __m256 vmin; + vmin = _mm256_min_ps( v0, v1 ); + vmin = _mm256_min_ps( vmin, v2 ); + vmin = _mm256_min_ps( vmin, v3 ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + + // Quantize these floats + const float d = (maxScalar - minScalar) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].m = minScalar; + y[i].d = d; + + // x = (x-min)*id + const __m256 mul = _mm256_set1_ps( id ); + const __m256 off = _mm256_set1_ps( minScalar ); + v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul ); + v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul ); + v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul ); + v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + // Compress the vector into 4 bit/value, and store + __m128i res = packNibbles( i0 ); + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); + } +#elif __ARM_NEON + for (int i = 0; i < nb; i++) { + float32x4_t srcv[8]; + float32x4_t minv[8]; + float32x4_t maxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l); + + for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); + for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); + for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]); + + for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]); + for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]); + for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]); + + const float min = vminvq_f32(minv[0]); + const float max = vmaxvq_f32(maxv[0]); + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + y[i].m = min; + + const float32x4_t minv0 = vdupq_n_f32(min); + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id); + const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest + const int32x4_t vi = vcvtq_s32_f32(vf); + + y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); + y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); + } + } +#else + // scalar + quantize_row_q4_1_reference(x, vy, k); +#endif +} + +static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) { + assert(k % QK == 0); + const int nb = k / QK; + + const block_q4_0 * restrict x = vx; #if defined(__AVX2__) for (int i = 0; i < nb; i++) { // scale factor - const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs)); + const __m256 d_v = _mm256_broadcast_ss(&x[i].d); - const uint8_t * restrict pp = pb + i*bs; + const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < QK; l += 32) { // Load 32x4-bit integers into 32x8-bit integers @@ -790,17 +998,15 @@ void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) { } #elif defined(__ARM_NEON) for (int i = 0; i < nb; i++) { - const float d = *(const float *) (pd + i*bs); + const float32x4_t vd = vdupq_n_f32(x[i].d); - const uint8_t * restrict pp = pb + i*bs; - - const float32x4_t vd = vdupq_n_f32(d); + const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < QK; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); - // Expand 4-bit nibbles to 8-bit bytes + // Expand 4-bit qs to 8-bit bytes const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f)); const uint8x8_t v1 = vshr_n_u8(v8, 4); @@ -844,9 +1050,9 @@ void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) { #else // scalar for (int i = 0; i < nb; i++) { - const float d = *(const float *) (pd + i*bs); + const float d = x[i].d; - const uint8_t * restrict pp = pb + i*bs; + const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < QK; l += 2) { const uint8_t vi = pp[l/2]; @@ -869,22 +1075,18 @@ void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) { #endif } -void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) { +static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) { assert(k % QK == 0); - const int nb = k / QK; - const size_t bs = 2*sizeof(float) + QK/2; - const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs); - const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float)); - const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float)); + const block_q4_1 * restrict x = vx; #if defined(__AVX2__) for (int i = 0; i < nb; i++) { - const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs)); - const __m256 d_m = _mm256_broadcast_ss((const float *) (pm + i*bs)); + const __m256 d_v = _mm256_broadcast_ss(&x[i].d); + const __m256 d_m = _mm256_broadcast_ss(&x[i].m); - const uint8_t * restrict pp = pb + i*bs; + const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < QK; l += 32) { // Load 32x4-bit integers into 32x8-bit integers @@ -909,12 +1111,56 @@ void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) { } } } +#elif defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + const float32x4_t vd = vdupq_n_f32(x[i].d); + const float32x4_t vm = vdupq_n_f32(x[i].m); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK; l += 16) { + // Load 16x4-bit integers into 8x8-bit integers + const uint8x8_t v8 = vld1_u8(pp + l/2); + + // Expand 4-bit qs to 8-bit bytes + const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f)); + const uint8x8_t v1 = vshr_n_u8(v8, 4); + + // Interleave and combine + const uint8x8_t vx_0 = vzip1_u8(v0, v1); + const uint8x8_t vx_1 = vzip2_u8(v0, v1); + + const uint8x16_t vq = vcombine_u8(vx_0, vx_1); + + // convert to 2x uint16x8_t + const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq)); + const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq)); + + // convert to 4x float32x4_t + const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0))); + const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0))); + const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1))); + const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1))); + + // multiply by d and add m + const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd); + const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd); + const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd); + const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); + + // Store + vst1q_f32(y + i*QK + l + 0, r0); + vst1q_f32(y + i*QK + l + 4, r1); + vst1q_f32(y + i*QK + l + 8, r2); + vst1q_f32(y + i*QK + l + 12, r3); + } + } #else for (int i = 0; i < nb; i++) { - const float d = *(const float *) (pd + i*bs); - const float m = *(const float *) (pm + i*bs); + const float d = x[i].d; + const float m = x[i].m; - const uint8_t * restrict pp = pb + i*bs; + const uint8_t * restrict pp = x[i].qs; for (int l = 0; l < QK; l += 2) { const uint8_t vi = pp[l/2]; @@ -1027,7 +1273,7 @@ void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) { } \ const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ - res = vaddvq_f32(vaddq_f32(t0, t1)); \ + res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ } #define GGML_F16_VEC GGML_F16x8 @@ -1122,13 +1368,36 @@ void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) { #define GGML_F16_EPR 8 // F16 arithmetic is not supported by AVX, so we use F32 instead -// we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32 #define GGML_F32Cx8 __m256 #define GGML_F32Cx8_ZERO _mm256_setzero_ps() #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x) + +#if defined(__F16C__) +// the _mm256_cvt intrinsics require F16C #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) +#else +static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { + float tmp[8]; + + for (int i = 0; i < 8; i++) + tmp[i] = GGML_FP16_TO_FP32(x[i]); + + return _mm256_loadu_ps(tmp); +} +static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { + float arr[8]; + + _mm256_storeu_ps(arr, y); + + for (int i = 0; i < 8; i++) + x[i] = GGML_FP32_TO_FP16(arr[i]); +} +#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x) +#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y) +#endif + #define GGML_F32Cx8_FMA GGML_F32x8_FMA #define GGML_F32Cx8_ADD _mm256_add_ps #define GGML_F32Cx8_MUL _mm256_mul_ps @@ -1440,9 +1709,8 @@ inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, co inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { - ggml_float sumf = 0.0; - #ifdef GGML_SIMD + float sumf = 0.0f; const int np = (n & ~(GGML_F32_STEP - 1)); GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; @@ -1468,8 +1736,9 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float } #else // scalar + ggml_float sumf = 0.0; for (int i = 0; i < n; ++i) { - sumf += x[i]*y[i]; + sumf += (ggml_float)(x[i]*y[i]); } #endif @@ -1479,25 +1748,15 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float #if __AVX512F__ && QK == 32 static inline __m512 dot_q4_0_oneblock_avx512( __m512 acc, - const uint8_t * pd0, - const uint8_t * pd1, - const uint8_t * pb0, - const uint8_t * pb1, - size_t bs, + const block_q4_0 * restrict x, + const block_q4_0 * restrict y, int i ) { - const float * d0_0 = (const float *) (pd0 + i*bs); - const float * d1_0 = (const float *) (pd1 + i*bs); - - const uint8_t * restrict p0 = pb0 + (i+0)*bs; - const uint8_t * restrict p1 = pb1 + (i+0)*bs; - // Compute combined scale for the block - float scaleScalar = d0_0[0] * d1_0[0]; - __m512 scale = _mm512_set1_ps( scaleScalar ); + __m512 d = _mm512_set1_ps( x[i].d * y[i].d ); - __m256i bx = bytesFromNibbles( p0 ); - __m256i by = bytesFromNibbles( p1 ); + __m256i bx = bytesFromNibbles( x[i].qs ); + __m256i by = bytesFromNibbles( y[i].qs ); // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. const __m256i off = _mm256_set1_epi8( 8 ); @@ -1513,7 +1772,7 @@ static inline __m512 dot_q4_0_oneblock_avx512( // Convert int32_t to float __m512 p = _mm512_cvtepi32_ps( i64 ); // Apply the scale, and accumulate - return _mm512_fmadd_ps( scale, p, acc ); + return _mm512_fmadd_ps( d, p, acc ); } #endif @@ -1542,30 +1801,25 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t // leftovers for (int i = np; i < n; ++i) { - sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]); + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); } #else for (int i = 0; i < n; ++i) { - sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]); + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); } #endif *s = sumf; } -inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) { +static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / QK; assert(n % QK == 0); assert(nb % 2 == 0); - const size_t bs = sizeof(float) + QK/2; - - const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs); - const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs); - - const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float)); - const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float)); + const block_q4_0 * restrict x = vx; + const block_q4_0 * restrict y = vy; float sumf = 0.0; @@ -1574,23 +1828,18 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void float sum1 = 0.0f; for (int i = 0; i < nb; i += 2) { - const float d0_0 = *(const float *) (pd0 + i*bs); - const float d1_0 = *(const float *) (pd1 + i*bs); - const float d0_1 = *(const float *) (pd0 + (i + 1)*bs); - const float d1_1 = *(const float *) (pd1 + (i + 1)*bs); - - //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1); - - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict y0 = &y[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q4_0 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0xf); const int8x16_t s8b = vdupq_n_s8(0x8); - const uint8x16_t v0_0 = vld1q_u8(p0); - const uint8x16_t v1_0 = vld1q_u8(p1); - const uint8x16_t v0_1 = vld1q_u8(p0 + bs); - const uint8x16_t v1_1 = vld1q_u8(p1 + bs); + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v1_0 = vld1q_u8(y0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + const uint8x16_t v1_1 = vld1q_u8(y1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b)); @@ -1628,11 +1877,11 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void // scalar #if defined(__ARM_FEATURE_QRDMX) - sum0 += d0_0*d1_0*vaddvq_s32(p_0); - sum1 += d0_1*d1_1*vaddvq_s32(p_1); + sum0 += x0->d * y0->d * vaddvq_s32(p_0); + sum1 += x1->d * y1->d * vaddvq_s32(p_1); #else - sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3)); - sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3)); + sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3)); + sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3)); #endif #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); @@ -1658,11 +1907,11 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void // scalar #if defined(__ARM_FEATURE_QRDMX) - sum0 += d0_0*d1_0*vaddvq_s16(p_0); - sum1 += d0_1*d1_1*vaddvq_s16(p_1); + sum0 += x0->d * y0->d * vaddvq_s16(p_0); + sum1 += x1->d * y1->d * vaddvq_s16(p_1); #else - sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7)); - sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7)); + sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7)); + sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7)); #endif #endif } @@ -1675,70 +1924,139 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void const int superblock_size = 8; const int superblock_count = nb / superblock_size; - const int remainder = nb % superblock_size; for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) { int i = superblock_ix * superblock_size; - acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 ); - acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 ); - acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 ); - acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 ); - acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 ); - acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 ); - acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 ); - acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 ); + acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 ); + acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 ); + acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 ); + acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 ); + acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 ); + acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 ); + acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 ); + acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 ); } // Remainders for (int i = superblock_count * superblock_size; i < nb; ++i) { - acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i ); + acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i ); } // Horizontal sum of all lanes of the accumulator sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 ); #elif defined(__AVX2__) - const size_t countBlocks = nb; + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + /* Prepare the constants we will need during execution */ + const __m256i lowMask = _mm256_set1_epi8( 0xF ); + const __m256i offset_8 = _mm256_set1_epi16( 8 ); + +#define UNROLL_COUNT 8 + // make sure we only unroll multiples of the block count + assert(nb % UNROLL_COUNT == 0); + + // Main loop + for (int i = 0; i < nb; i+=UNROLL_COUNT) { + // This loop will be unrolled by the compiler + for (int u=0;u we now have a vector of 8 int_32t */ + __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q ); + + /* Convert to vectore of 8 int32_t to 8 floats */ + __m256 q = _mm256_cvtepi32_ps( xy_q ); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( scale, q, acc ); + } + } + + // Return horizontal sum of the acc vector + __m128 res = _mm256_extractf128_ps( acc, 1 ); + res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); + res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); + res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); + sumf = _mm_cvtss_f32( res ); +#elif defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; ++i) { - const float * d0_0 = (const float *) (pd0 + i*bs); - const float * d1_0 = (const float *) (pd1 + i*bs); + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + __m128i i32[2]; + for (int j = 0; j < 2; ++j) { + // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes + __m128i bx = bytesFromNibbles( x[i].qs + 8*j ); + __m128i by = bytesFromNibbles( y[i].qs + 8*j ); - // Compute combined scale for the block - const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) ); + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m128i off = _mm_set1_epi8( 8 ); + bx = _mm_sub_epi8( bx, off ); + by = _mm_sub_epi8( by, off ); - // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes - __m256i bx = bytesFromNibbles( p0 ); - __m256i by = bytesFromNibbles( p1 ); + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(bx, bx); - // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. - const __m256i off = _mm256_set1_epi8( 8 ); - bx = _mm256_sub_epi8( bx, off ); - by = _mm256_sub_epi8( by, off ); + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(by, bx); - // Sign-extend first 16 signed bytes into int16_t - __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) ); - __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) ); - // Compute products of int16_t integers, add pairwise - __m256i i32 = _mm256_madd_epi16( x16, y16 ); + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); - // Sign-extend last 16 signed bytes into int16_t vectors - x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) ); - y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) ); - // Accumulate products of int16_t integers - i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) ); + const __m128i ones = _mm_set1_epi16(1); + i32[j] = _mm_madd_epi16(ones, dot); + } // Convert int32_t to float - __m256 p = _mm256_cvtepi32_ps( i32 ); + __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] )); // Apply the scale, and accumulate - acc = _mm256_fmadd_ps( scale, p, acc ); + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); } // Return horizontal sum of the acc vector @@ -1754,21 +2072,18 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void float sum1 = 0.0f; for (int i = 0; i < nb; i += 2) { - const float d0_0 = *(const float *) (pd0 + i*bs); - const float d1_0 = *(const float *) (pd1 + i*bs); - const float d0_1 = *(const float *) (pd0 + (i + 1)*bs); - const float d1_1 = *(const float *) (pd1 + (i + 1)*bs); - - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + const block_q4_0 * restrict x0 = &px[i + 0]; + const block_q4_0 * restrict y0 = &py[i + 0]; + const block_q4_0 * restrict x1 = &px[i + 1]; + const block_q4_0 * restrict y1 = &py[i + 1]; const v128_t m4b = wasm_u8x16_splat(0xf); const v128_t s8b = wasm_i8x16_splat(0x8); - const v128_t v0_0 = wasm_v128_load(p0); - const v128_t v0_1 = wasm_v128_load(p0 + bs); - const v128_t v1_0 = wasm_v128_load(p1); - const v128_t v1_1 = wasm_v128_load(p1 + bs); + const v128_t v0_0 = wasm_v128_load(x0.qs); + const v128_t v0_1 = wasm_v128_load(y0.qs); + const v128_t v1_0 = wasm_v128_load(x1.qs); + const v128_t v1_1 = wasm_v128_load(y1.qs); // 4-bit -> 8-bit const v128_t v0_0l = wasm_v128_and(v0_0, m4b); @@ -1818,12 +2133,12 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0); const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1); - sum0 += d0_0*d1_0*( + sum0 += x0->d * y0->d * ( wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) + wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) + wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) + wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7)); - sum1 += d0_1*d1_1*( + sum1 += x1->d * y1->d * ( wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) + wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) + wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) + @@ -1834,11 +2149,11 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void #else // scalar for (int i = 0; i < nb; i++) { - const float d0 = *(const float *) (pd0 + i*bs); - const float d1 = *(const float *) (pd1 + i*bs); + const float d0 = x[i].d; + const float d1 = y[i].d; - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + const uint8_t * restrict p0 = x[i].qs; + const uint8_t * restrict p1 = y[i].qs; for (int j = 0; j < QK/2; j++) { const uint8_t v0 = p0[j]; @@ -1858,19 +2173,11 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void *s = sumf; } -inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) { +static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / QK; - const size_t bs = 2*sizeof(float) + QK/2; - - const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs); - const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs); - - const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float)); - const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float)); - - const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float)); - const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float)); + const block_q4_1 * restrict x = vx; + const block_q4_1 * restrict y = vy; float sumf = 0.0; @@ -1882,32 +2189,28 @@ inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void // Main loop for (int i = 0; i < nb; ++i) { - const float * m0 = (const float *) (pm0 + i*bs); - const float * m1 = (const float *) (pm1 + i*bs); + const float * d0 = &x[i].d; + const float * d1 = &y[i].d; - const float * d0 = (const float *) (pd0 + i*bs); - const float * d1 = (const float *) (pd1 + i*bs); - - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + const float * m0 = &x[i].m; + const float * m1 = &y[i].m; const __m256 d0v = _mm256_broadcast_ss( d0 ); const __m256 d1v = _mm256_broadcast_ss( d1 ); const __m256 m0v = _mm256_broadcast_ss( m0 ); const __m256 m1v = _mm256_broadcast_ss( m1 ); - // Compute combined scale for the block const __m256 scale_01 = _mm256_mul_ps( d0v, d1v ); // Compute cross scales for the block const __m256 scale_0 = _mm256_mul_ps( d0v, m1v ); const __m256 scale_1 = _mm256_mul_ps( m0v, d1v ); - const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 ); + const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ ); // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes - __m256i bx = bytesFromNibbles( p0 ); - __m256i by = bytesFromNibbles( p1 ); + __m256i bx = bytesFromNibbles( x[i].qs ); + __m256i by = bytesFromNibbles( y[i].qs ); // Now we have a vector with bytes in [ 0 .. 15 ] interval. @@ -1949,17 +2252,56 @@ inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); sumf = _mm_cvtss_f32( res ) + acc_offset * QK; -#else - // scalar - for (int i = 0; i < nb; i++) { - const float m0 = *(const float *) (pm0 + i*bs); - const float m1 = *(const float *) (pm1 + i*bs); +#elif defined(__ARM_NEON) + float sum00 = 0.0f; + float sum01 = 0.0f; + float sum10 = 0.0f; + float sum11 = 0.0f; - const float d0 = *(const float *) (pd0 + i*bs); - const float d1 = *(const float *) (pd1 + i*bs); + for (int i = 0; i < nb; ++i) { + const block_q4_1 * restrict x0 = &x[i + 0]; + const block_q4_1 * restrict y0 = &y[i + 0]; + + const uint8x16_t m4b = vdupq_n_u8(0xf); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v1_0 = vld1q_u8(y0->qs); + + // and with 0xf + const uint8x16_t v0_0l = vandq_u8(v0_0, m4b); + const uint8x16_t v1_0l = vandq_u8(v1_0, m4b); + + const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4); + const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4); - const uint8_t * restrict p0 = pb0 + i*bs; - const uint8_t * restrict p1 = pb1 + i*bs; + // dot product into uint16x8_t + const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l)); + const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l)); + + const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h)); + const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h)); + + const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h); + const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h); + + sum00 += x0->m*y0->m; + sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h)); + sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h)); + sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0)); + } + + sumf = QK*sum00 + sum01 + sum10 + sum11; +#else + // scalar + for (int i = 0; i < nb; i++) { + const float d0 = x[i].d; + const float d1 = y[i].d; + + const float m0 = x[i].m; + const float m1 = y[i].m; + + const uint8_t * restrict p0 = x[i].qs; + const uint8_t * restrict p1 = y[i].qs; for (int j = 0; j < QK/2; j++) { const uint8_t v0 = p0[j]; @@ -2018,13 +2360,13 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * re // leftovers for (int i = np; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { - sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]); + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); } } #else for (int i = 0; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { - sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]); + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); } } #endif @@ -2095,19 +2437,19 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #endif } -inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); } +inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } -inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); } +inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } -static const ggml_float GELU_COEF_A = 0.044715; -static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876; +static const float GELU_COEF_A = 0.044715f; +static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; inline static float ggml_gelu_f32(float x) { - return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x))); + return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { @@ -2136,7 +2478,7 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { // Sigmoid Linear Unit (SiLU) function inline static float ggml_silu_f32(float x) { - return x/(1.0 + exp(-x)); + return x/(1.0f + expf(-x)); } inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { @@ -2167,7 +2509,7 @@ inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE ggml_float sum = 0.0; for (int i = 0; i < n; ++i) { - sum += x[i]; + sum += (ggml_float)x[i]; } *s = sum; #else @@ -2177,7 +2519,7 @@ inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE - ggml_float max = -INFINITY; + float max = -INFINITY; for (int i = 0; i < n; ++i) { max = MAX(max, x[i]); } @@ -2187,7 +2529,10 @@ inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { #endif } -inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); } +inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { + ggml_vec_norm_f32(n, s, x); + *s = 1.f/(*s); +} // // logging @@ -2230,8 +2575,8 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { - sizeof(float ) + QK/2, - sizeof(float )*2 + QK/2, + sizeof(block_q4_0), + sizeof(block_q4_1), sizeof(int8_t ), sizeof(int16_t), sizeof(int32_t), @@ -2269,6 +2614,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "SCALE", "CPY", + "CONT", "RESHAPE", "VIEW", "PERMUTE", @@ -2284,7 +2630,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "FLASH_FF", }; -static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35"); +static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2313,6 +2659,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "x*v", "x-\\>y", + "cont(x)", "reshape(x)", "view(x)", "permute(x)", @@ -2328,22 +2675,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "flash_ff(x)", }; -static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35"); - -// -// ggml object -// - -struct ggml_object { - size_t offs; - size_t size; - - struct ggml_object * next; - - char padding[8]; -}; - -static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); +static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -2356,9 +2688,9 @@ struct ggml_context { size_t mem_size; void * mem_buffer; bool mem_buffer_owned; - bool mem_buffer_mlocked; + bool no_alloc; - int n_objects; + int n_objects; struct ggml_object * objects_begin; struct ggml_object * objects_end; @@ -2443,7 +2775,7 @@ void ggml_print_objects(const struct ggml_context * ctx) { GGML_PRINT("%s: --- end ---\n", __func__); } -int ggml_nelements(const struct ggml_tensor * tensor) { +int64_t ggml_nelements(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; @@ -2575,6 +2907,9 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { static bool is_first_call = true; if (is_first_call) { + // initialize time system (required on Windows) + ggml_time_init(); + // initialize GELU, SILU and EXP F32 tables { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); @@ -2586,7 +2921,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii); table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); - table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f)); + table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); } const uint64_t t_end = ggml_time_us(); UNUSED(t_end); @@ -2639,7 +2974,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { /*.mem_size =*/ params.mem_size, /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, - /*.mem_buffer_mlocked =*/ false, + /*.no_alloc =*/ params.no_alloc, /*.n_objects =*/ 0, /*.objects_begin =*/ NULL, /*.objects_end =*/ NULL, @@ -2671,14 +3006,6 @@ void ggml_free(struct ggml_context * ctx) { GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n", __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size); -#if GGML_MLOCK_SUPPORT - if (ctx->mem_buffer_mlocked) { - if (munlock(ctx->mem_buffer, ctx->mem_size)) { - fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno)); - } - } -#endif - if (ctx->mem_buffer_owned) { free(ctx->mem_buffer); } @@ -2707,44 +3034,13 @@ size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) return result; } -bool ggml_mlock_supported(void) { - return GGML_MLOCK_SUPPORT; -} - -#if GGML_MLOCK_SUPPORT -#ifdef __APPLE__ - #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \ - "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)." -#else - #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)." -#endif -bool ggml_mlock(struct ggml_context * ctx, char ** err_p) { - if (ctx->mem_buffer_mlocked) { - return true; - } - if (mlock(ctx->mem_buffer, ctx->mem_size)) { - int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION, - ctx->mem_size, strerror(errno)); - GGML_ASSERT(ret >= 0); - return false; - } - ctx->mem_buffer_mlocked = true; - return true; -} -#else // GGML_MLOCK_SUPPORT -bool ggml_mlock(struct ggml_context * ctx, char ** err_p) { - *err_p = strdup("can't mlock because it's not supported on this system"); - return false; -} -#endif // GGML_MLOCK_SUPPORT - //////////////////////////////////////////////////////////////////////////////// struct ggml_tensor * ggml_new_tensor_impl( struct ggml_context * ctx, enum ggml_type type, int n_dims, - const int* ne, + const int64_t* ne, void* data) { // always insert objects at the end of the context's memory pool struct ggml_object * obj_cur = ctx->objects_end; @@ -2755,7 +3051,7 @@ struct ggml_tensor * ggml_new_tensor_impl( size_t size_needed = 0; - if (data == NULL) { + if (data == NULL && !ctx->no_alloc) { size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]); for (int i = 1; i < n_dims; i++) { size_needed *= ne[i]; @@ -2839,11 +3135,12 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, - /*.data =*/ data == NULL ? (void *)(result + 1) : data, + /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, /*.pad =*/ { 0 }, }; - ggml_assert_aligned(result->data); + // TODO: this should not be needed as long as we don't rely on aligned SIMD loads + //ggml_assert_aligned(result->data); for (int i = 0; i < n_dims; i++) { result->ne[i] = ne[i]; @@ -2864,44 +3161,44 @@ struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, enum ggml_type type, int n_dims, - const int * ne) { + const int64_t * ne) { return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); } struct ggml_tensor * ggml_new_tensor_1d( struct ggml_context * ctx, enum ggml_type type, - int ne0) { + int64_t ne0) { return ggml_new_tensor(ctx, type, 1, &ne0); } struct ggml_tensor * ggml_new_tensor_2d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1) { - const int ne[2] = { ne0, ne1 }; + int64_t ne0, + int64_t ne1) { + const int64_t ne[2] = { ne0, ne1 }; return ggml_new_tensor(ctx, type, 2, ne); } struct ggml_tensor * ggml_new_tensor_3d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1, - int ne2) { - const int ne[3] = { ne0, ne1, ne2 }; + int64_t ne0, + int64_t ne1, + int64_t ne2) { + const int64_t ne[3] = { ne0, ne1, ne2 }; return ggml_new_tensor(ctx, type, 3, ne); } struct ggml_tensor * ggml_new_tensor_4d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1, - int ne2, - int ne3) { - const int ne[4] = { ne0, ne1, ne2, ne3 }; + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; return ggml_new_tensor(ctx, type, 4, ne); } @@ -3244,7 +3541,14 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) { struct ggml_tensor * ggml_view_tensor( struct ggml_context * ctx, const struct ggml_tensor * src) { - return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + + result->nb[0] = src->nb[0]; + result->nb[1] = src->nb[1]; + result->nb[2] = src->nb[2]; + result->nb[3] = src->nb[3]; + + return result; } //////////////////////////////////////////////////////////////////////////////// @@ -3548,7 +3852,7 @@ struct ggml_tensor * ggml_mean( is_node = true; } - int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] }; + int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne); result->op = GGML_OP_MEAN; @@ -3909,7 +4213,7 @@ struct ggml_tensor * ggml_mul_mat( is_node = true; } - const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] }; + const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); result->op = GGML_OP_MUL_MAT; @@ -4004,6 +4308,41 @@ struct ggml_tensor * ggml_cpy_inplace( return ggml_cpy_impl(ctx, a, b, true); } +// ggml_cont + +struct ggml_tensor * ggml_cont_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_CONT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_cont_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_cont_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_cont_impl(ctx, a, true); +} + // ggml_reshape struct ggml_tensor * ggml_reshape( @@ -4034,8 +4373,8 @@ struct ggml_tensor * ggml_reshape( struct ggml_tensor * ggml_reshape_2d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1) { + int64_t ne0, + int64_t ne1) { GGML_ASSERT(ggml_is_contiguous(a)); GGML_ASSERT(ggml_nelements(a) == ne0*ne1); @@ -4046,7 +4385,7 @@ struct ggml_tensor * ggml_reshape_2d( is_node = true; } - const int ne[2] = { ne0, ne1 }; + const int64_t ne[2] = { ne0, ne1 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); result->op = GGML_OP_RESHAPE; @@ -4060,9 +4399,9 @@ struct ggml_tensor * ggml_reshape_2d( struct ggml_tensor * ggml_reshape_3d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1, - int ne2) { + int64_t ne0, + int64_t ne1, + int64_t ne2) { GGML_ASSERT(ggml_is_contiguous(a)); GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2); @@ -4073,7 +4412,7 @@ struct ggml_tensor * ggml_reshape_3d( is_node = true; } - const int ne[3] = { ne0, ne1, ne2 }; + const int64_t ne[3] = { ne0, ne1, ne2 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); result->op = GGML_OP_RESHAPE; @@ -4089,7 +4428,7 @@ struct ggml_tensor * ggml_reshape_3d( struct ggml_tensor * ggml_view_1d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, + int64_t ne0, size_t offset) { if (a->grad) { GGML_ASSERT(false); // gradient propagation is not supported @@ -4110,15 +4449,15 @@ struct ggml_tensor * ggml_view_1d( struct ggml_tensor * ggml_view_2d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1, + int64_t ne0, + int64_t ne1, size_t nb1, size_t offset) { if (a->grad) { GGML_ASSERT(false); // gradient propagation is not supported } - const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); @@ -4134,6 +4473,37 @@ struct ggml_tensor * ggml_view_2d( return result; } +// ggml_view_3d + +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, + size_t nb2, + size_t offset) { + if (a->grad) { + GGML_ASSERT(false); // gradient propagation is not supported + } + + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = result->nb[2]*ne2; + + result->op = GGML_OP_VIEW; + result->grad = NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store the offset here? + + return result; +} + // ggml_permute struct ggml_tensor * ggml_permute( @@ -4349,7 +4719,7 @@ struct ggml_tensor * ggml_conv_1d_1s( is_node = true; } - const int ne[4] = { b->ne[0], a->ne[2], 1, 1, }; + const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); result->op = GGML_OP_CONV_1D_1S; @@ -4376,7 +4746,7 @@ struct ggml_tensor * ggml_conv_1d_2s( is_node = true; } - const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; + const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); result->op = GGML_OP_CONV_1D_2S; @@ -4469,102 +4839,191 @@ static void ggml_compute_forward_dup_f16( const struct ggml_tensor * src0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - if (ggml_is_contiguous(src0) && src0->type == dst->type) { + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); return; } - if (src0->nb[0] == sizeof(ggml_fp16_t)) { - if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - const size_t rs = ne00*nb00; + if (src0->type == dst->type && + src0->ne[0] == dst->ne[0] && + src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; - char * dst_ptr = (char *) dst->data + id*rs; + // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy - memcpy(dst_ptr, src0_ptr, rs); + if (ggml_is_contiguous(dst)) { + if (src0->nb[0] == sizeof(ggml_fp16_t)) { + if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + const size_t rs = ne00*nb00; - id++; - } - } - } - } else if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + char * dst_ptr = (char *) dst->data + id*rs; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + memcpy(dst_ptr, src0_ptr, rs); - dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); id++; } } } + } else if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); + id++; + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement } } else { - GGML_ASSERT(false); // TODO: implement - } - } else { - //printf("%s: this is not optimal - fix me\n", __func__); + //printf("%s: this is not optimal - fix me\n", __func__); - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); - id++; + dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); + id++; + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } } } } + } else { + GGML_ASSERT(false); // TODO: implement } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; - - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + } + return; + } - dst_ptr[id] = *src0_ptr; - id++; + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t)); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } } } } } - } else { - GGML_ASSERT(false); // TODO: implement } + } else { + GGML_ASSERT(false); // TODO: implement } } @@ -4573,102 +5032,191 @@ static void ggml_compute_forward_dup_f32( const struct ggml_tensor * src0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - if (ggml_is_contiguous(src0) && src0->type == dst->type) { + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); return; } - if (src0->nb[0] == sizeof(float)) { - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - const size_t rs = ne00*nb00; - - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; - char * dst_ptr = (char *) dst->data + id*rs; - - memcpy(dst_ptr, src0_ptr, rs); - - id++; - } + if (src0->type == dst->type && + src0->ne[0] == dst->ne[0] && + src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); } } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + } + return; + } - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + if (ggml_is_contiguous(dst)) { + // TODO: simplify + if (src0->nb[0] == sizeof(float)) { + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + const size_t rs = ne00*nb00; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + char * dst_ptr = (char *) dst->data + id*rs; + + memcpy(dst_ptr, src0_ptr, rs); - dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); id++; } } } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); + id++; + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement } } else { - GGML_ASSERT(false); // TODO: implement - } - } else { - //printf("%s: this is not optimal - fix me\n", __func__); + //printf("%s: this is not optimal - fix me\n", __func__); - if (dst->type == GGML_TYPE_F32) { - size_t id = 0; - float * dst_ptr = (float *) dst->data; + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); - dst_ptr[id] = *src0_ptr; - id++; + dst_ptr[id] = *src0_ptr; + id++; + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); + id++; + } } } } + } else { + GGML_ASSERT(false); // TODO: implement } - } else if (dst->type == GGML_TYPE_F16) { - size_t id = 0; - ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + } - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { - for (int i00 = 0; i00 < ne00; i00++) { - const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + return; + } - dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); - id++; + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(float)); + + if (++i10 == dst->ne[0]) { + i10 = 0; + if (++i11 == dst->ne[1]) { + i11 = 0; + if (++i12 == dst->ne[2]) { + i12 = 0; + if (++i13 == dst->ne[3]) { + i13 = 0; + } + } + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr); + + if (++i10 == dst->ne[0]) { + i10 = 0; + if (++i11 == dst->ne[1]) { + i11 = 0; + if (++i12 == dst->ne[2]) { + i12 = 0; + if (++i13 == dst->ne[3]) { + i13 = 0; + } + } + } } } } } - } else { - GGML_ASSERT(false); // TODO: implement } + } else { + GGML_ASSERT(false); // TODO: implement } } @@ -4729,14 +5277,18 @@ static void ggml_compute_forward_add_f32( GGML_ASSERT(nb00 == sizeof(float)); if (nb10 == sizeof(float)) { - const int j0 = (n/nth)*ith; - const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1); - - for (int j = j0; j < j1; j++) { + for (int j = ith; j < n; j += nth) { +#ifdef GGML_USE_ACCELERATE + vDSP_vadd( + (float *) ((char *) src0->data + j*nb01), 1, + (float *) ((char *) src1->data + j*nb11), 1, + (float *) ((char *) dst->data + j*nb1), 1, nc); +#else ggml_vec_add_f32(nc, (float *) ((char *) dst->data + j*nb1), (float *) ((char *) src0->data + j*nb01), (float *) ((char *) src1->data + j*nb11)); +#endif } } else { // src1 is not contiguous @@ -5043,18 +5595,18 @@ static void ggml_compute_forward_sum_f32( assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_f32(ne00, (float *) (dst->data), (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); @@ -5099,19 +5651,19 @@ static void ggml_compute_forward_mean_f32( assert(src0->nb[0] == sizeof(float)); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; assert(ne0 == 1); assert(ne1 == ne01); @@ -5127,9 +5679,9 @@ static void ggml_compute_forward_mean_f32( const size_t nb2 = dst->nb[2]; const size_t nb3 = dst->nb[3]; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { ggml_vec_sum_f32(ne00, (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); @@ -5616,10 +6168,10 @@ static void ggml_compute_forward_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; @@ -5629,31 +6181,32 @@ static void ggml_compute_forward_norm_f32( const size_t nb2 = dst->nb[2]; const size_t nb3 = dst->nb[3]; - const ggml_float eps = 1e-5f; // TODO: make this a parameter + const float eps = 1e-5f; // TODO: make this a parameter // TODO: optimize - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = ith; i01 < ne01; i01 += nth) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); - ggml_float mean = 0.0; - for (int i00 = 0; i00 < ne00; i00++) { - mean += x[i00]; + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)x[i00]; } - mean /= ne00; + float mean = sum/ne00; float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); ggml_float sum2 = 0.0; - for (int i00 = 0; i00 < ne00; i00++) { - ggml_float v = x[i00] - mean; + for (int64_t i00 = 0; i00 < ne00; i00++) { + float v = x[i00] - mean; y[i00] = v; - sum2 += v*v; + sum2 += (ggml_float)(v*v); } - const float scale = 1.0/sqrt(sum2/ne00 + eps); + float variance = sum2/ne00; + const float scale = 1.0f/sqrtf(variance + eps); ggml_vec_scale_f32(ne00, y, scale); } @@ -5698,10 +6251,10 @@ static void ggml_compute_forward_rms_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; const size_t nb01 = src0->nb[1]; const size_t nb02 = src0->nb[2]; @@ -5711,20 +6264,20 @@ static void ggml_compute_forward_rms_norm_f32( const size_t nb2 = dst->nb[2]; const size_t nb3 = dst->nb[3]; - const ggml_float eps = 1e-6f; // TODO: make this a parameter + const float eps = 1e-6f; // TODO: make this a parameter // TODO: optimize - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = ith; i01 < ne01; i01 += nth) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); - ggml_float mean = 0.0; - for (int i00 = 0; i00 < ne00; i00++) { - mean += x[i00] * x[i00]; + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)(x[i00] * x[i00]); } - mean /= ne00; + float mean = sum/ne00; float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); @@ -5733,7 +6286,7 @@ static void ggml_compute_forward_rms_norm_f32( // y[i00] = x[i00]; // } - const float scale = 1.0/sqrt(mean + eps); + const float scale = 1.0f/sqrtf(mean + eps); ggml_vec_scale_f32(ne00, y, scale); } @@ -5773,191 +6326,27 @@ static bool ggml_compute_forward_mul_mat_use_blas( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - //const int ne00 = src0->ne[0]; - //const int ne01 = src0->ne[1]; - - const int ne10 = src1->ne[0]; - - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - - // TODO: find the optimal values for these - if (ggml_is_contiguous(src0) && - ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) { - - /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ - return true; - } - - return false; -} -#endif + //const int64_t ne00 = src0->ne[0]; + //const int64_t ne01 = src0->ne[1]; -static void ggml_compute_forward_mul_mat_f32( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); - - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; - - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - const int ne13 = src1->ne[3]; - - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - - const int ith = params->ith; - const int nth = params->nth; - - assert(ne02 == ne12); - assert(ne03 == ne13); - assert(ne2 == ne12); - assert(ne3 == ne13); - - // TODO: we don't support permuted src0 - assert(nb00 == sizeof(float)); - - // dst cannot be transposed or permuted - assert(nb0 == sizeof(float)); - assert(nb0 <= nb1); - assert(nb1 <= nb2); - assert(nb2 <= nb3); - - assert(ne0 == ne01); - assert(ne1 == ne11); - assert(ne2 == ne02); - assert(ne3 == ne03); - - // nb01 >= nb00 - src0 is not transposed - // compute by src0 rows - -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - GGML_ASSERT(nb10 == sizeof(float)); - - if (params->ith != 0) { - return; - } - - if (params->type == GGML_TASK_INIT) { - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); - const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); - - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - - // zT = y * xT - cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01); - } - } - - //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); - - return; - } -#endif - - if (params->type == GGML_TASK_INIT) { - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - // TODO: do not support transposed src1 - assert(nb10 == sizeof(float)); - - // parallelize by src0 rows using ggml_vec_dot_f32 - - // total rows in src0 - const int nr = ne01*ne02*ne03; - - // rows per thread - const int dr = (nr + nth - 1)/nth; - - // row range for this thread - const int ir0 = dr*ith; - const int ir1 = MIN(ir0 + dr, nr); - - for (int ir = ir0; ir < ir1; ++ir) { - // src0 indices - const int i03 = ir/(ne02*ne01); - const int i02 = (ir - i03*ne02*ne01)/ne01; - const int i01 = (ir - i03*ne02*ne01 - i02*ne01); - - for (int ic = 0; ic < ne11; ++ic) { - // src1 indices - const int i13 = i03; - const int i12 = i02; - const int i11 = ic; + const int64_t ne10 = src1->ne[0]; - // dst indices - const int i0 = i01; - const int i1 = i11; - const int i2 = i02; - const int i3 = i03; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; - ggml_vec_dot_f32(ne00, - (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), - (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); - } - } + // TODO: find the optimal values for these + if (ggml_is_contiguous(src0) && + ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) { - //int64_t t1 = ggml_perf_time_us(); - //static int64_t acc = 0; - //acc += t1 - t0; - //if (t1 - t0 > 10) { - // printf("\n"); - // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); - // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); - // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); - // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ + return true; + } - // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); - //} + return false; } +#endif -static void ggml_compute_forward_mul_mat_f16_f32( +static void ggml_compute_forward_mul_mat_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -5965,28 +6354,33 @@ static void ggml_compute_forward_mul_mat_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - const int ne13 = src1->ne[3]; +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + const int64_t ne10 = src1->ne[0]; +#endif + const int64_t ne11 = src1->ne[1]; +#ifndef NDEBUG + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; const int nb00 = src0->nb[0]; +#endif const int nb01 = src0->nb[1]; const int nb02 = src0->nb[2]; const int nb03 = src0->nb[3]; +#ifndef NDEBUG const int nb10 = src1->nb[0]; +#endif const int nb11 = src1->nb[1]; const int nb12 = src1->nb[2]; const int nb13 = src1->nb[3]; @@ -5999,32 +6393,31 @@ static void ggml_compute_forward_mul_mat_f16_f32( const int ith = params->ith; const int nth = params->nth; - GGML_ASSERT(ne02 == ne12); - GGML_ASSERT(ne03 == ne13); - GGML_ASSERT(ne2 == ne12); - GGML_ASSERT(ne3 == ne13); + assert(ne02 == ne12); + assert(ne03 == ne13); + assert(ne2 == ne12); + assert(ne3 == ne13); - // TODO: we don't support permuted src0 - GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + // we don't support permuted src0 or src1 + assert(nb00 == sizeof(float)); + assert(nb10 == sizeof(float)); // dst cannot be transposed or permuted - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb0 <= nb1); - GGML_ASSERT(nb1 <= nb2); - GGML_ASSERT(nb2 <= nb3); + assert(nb0 == sizeof(float)); + assert(nb0 <= nb1); + assert(nb1 <= nb2); + assert(nb2 <= nb3); - GGML_ASSERT(ne0 == ne01); - GGML_ASSERT(ne1 == ne11); - GGML_ASSERT(ne2 == ne02); - GGML_ASSERT(ne3 == ne03); + assert(ne0 == ne01); + assert(ne1 == ne11); + assert(ne2 == ne02); + assert(ne3 == ne03); // nb01 >= nb00 - src0 is not transposed // compute by src0 rows #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - GGML_ASSERT(nb10 == sizeof(float)); - if (params->ith != 0) { return; } @@ -6037,20 +6430,9 @@ static void ggml_compute_forward_mul_mat_f16_f32( return; } - float * const wdata = params->wdata; - - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { - { - size_t id = 0; - for (int i01 = 0; i01 < ne01; ++i01) { - for (int i00 = 0; i00 < ne00; ++i00) { - wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); - } - } - } - - const float * x = wdata; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); @@ -6064,28 +6446,13 @@ static void ggml_compute_forward_mul_mat_f16_f32( } } - /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ + //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; } #endif if (params->type == GGML_TASK_INIT) { - ggml_fp16_t * const wdata = params->wdata; - - size_t id = 0; - for (int i13 = 0; i13 < ne13; ++i13) { - for (int i12 = 0; i12 < ne12; ++i12) { - for (int i11 = 0; i11 < ne11; ++i11) { - for (int i10 = 0; i10 < ne10; ++i10) { - wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); - } - } - } - } - - GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); - return; } @@ -6093,11 +6460,7 @@ static void ggml_compute_forward_mul_mat_f16_f32( return; } - // fp16 -> half the size, so divide by 2 - // TODO: do not support transposed src1 - assert(nb10/2 == sizeof(ggml_fp16_t)); - - // parallelize by src0 rows using ggml_vec_dot_f16 + // parallelize by src0 rows using ggml_vec_dot_f32 // total rows in src0 const int nr = ne01*ne02*ne03; @@ -6109,32 +6472,32 @@ static void ggml_compute_forward_mul_mat_f16_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - ggml_fp16_t * wdata = params->wdata; - for (int ir = ir0; ir < ir1; ++ir) { // src0 indices const int i03 = ir/(ne02*ne01); const int i02 = (ir - i03*ne02*ne01)/ne01; const int i01 = (ir - i03*ne02*ne01 - i02*ne01); - const int i13 = i03; - const int i12 = i02; - - const int i0 = i01; - const int i2 = i02; - const int i3 = i03; - - ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); - ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00; + for (int64_t ic = 0; ic < ne11; ++ic) { + // src1 indices + const int i13 = i03; + const int i12 = i02; + const int i11 = ic; - float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); + // dst indices + const int i0 = i01; + const int i1 = i11; + const int i2 = i02; + const int i3 = i03; - for (int ic = 0; ic < ne11; ++ic) { - ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); + ggml_vec_dot_f32(ne00, + (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), + (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); } } - //int64_t t1 = ggml_time_us(); + //int64_t t1 = ggml_perf_time_us(); //static int64_t acc = 0; //acc += t1 - t0; //if (t1 - t0 > 10) { @@ -6142,12 +6505,13 @@ static void ggml_compute_forward_mul_mat_f16_f32( // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); //} } -static void ggml_compute_forward_mul_mat_q4_0_f32( +static void ggml_compute_forward_mul_mat_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -6155,21 +6519,21 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -6195,7 +6559,7 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( GGML_ASSERT(ne3 == ne13); // TODO: we don't support permuted src0 - GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); @@ -6229,13 +6593,14 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( float * const wdata = params->wdata; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { { size_t id = 0; - for (int i01 = 0; i01 < ne01; ++i01) { - dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); - id += ne00; + for (int64_t i01 = 0; i01 < ne01; ++i01) { + for (int64_t i00 = 0; i00 < ne00; ++i00) { + wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); + } } } @@ -6253,24 +6618,28 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( } } - /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ + /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ return; } #endif if (params->type == GGML_TASK_INIT) { - char * wdata = params->wdata; + ggml_fp16_t * const wdata = params->wdata; - for (int i13 = 0; i13 < ne13; ++i13) { - for (int i12 = 0; i12 < ne12; ++i12) { - for (int i11 = 0; i11 < ne11; ++i11) { - quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); - wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]; + size_t id = 0; + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + for (int64_t i10 = 0; i10 < ne10; ++i10) { + wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); + } } } } + GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); + return; } @@ -6278,9 +6647,11 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( return; } + // fp16 -> half the size, so divide by 2 // TODO: do not support transposed src1 + assert(nb10/2 == sizeof(ggml_fp16_t)); - // parallelize by src0 rows using ggml_vec_dot_q4_0 + // parallelize by src0 rows using ggml_vec_dot_f16 // total rows in src0 const int nr = ne01*ne02*ne03; @@ -6292,7 +6663,7 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - void * wdata = params->wdata; + ggml_fp16_t * wdata = params->wdata; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices @@ -6307,15 +6678,13 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( const int i2 = i02; const int i3 = i03; - void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); - char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]); + ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00; float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); - assert(ne00 % 32 == 0); - - for (int ic = 0; ic < ne11; ++ic) { - ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]))); + for (int64_t ic = 0; ic < ne11; ++ic) { + ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); } } @@ -6332,7 +6701,28 @@ static void ggml_compute_forward_mul_mat_q4_0_f32( //} } -static void ggml_compute_forward_mul_mat_q4_1_f32( +static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { + [GGML_TYPE_Q4_0] = { + .dequantize_row_q = dequantize_row_q4_0, + .quantize_row_q = quantize_row_q4_0, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, + .vec_dot_q = ggml_vec_dot_q4_0, + }, + [GGML_TYPE_Q4_1] = { + .dequantize_row_q = dequantize_row_q4_1, + .quantize_row_q = quantize_row_q4_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, + .vec_dot_q = ggml_vec_dot_q4_1, + }, +}; + +// For internal test use +quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { + GGML_ASSERT(i < GGML_TYPE_COUNT); + return quantize_fns[i]; +} + +static void ggml_compute_forward_mul_mat_q_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -6340,21 +6730,20 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -6379,8 +6768,13 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); - // TODO: we don't support permuted src0 - GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]); + const enum ggml_type type = src0->type; + quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; + vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); @@ -6398,8 +6792,6 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - GGML_ASSERT(nb10 == sizeof(float)); - if (params->ith != 0) { return; } @@ -6413,13 +6805,14 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( } float * const wdata = params->wdata; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; - for (int i03 = 0; i03 < ne03; i03++) { - for (int i02 = 0; i02 < ne02; i02++) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { { size_t id = 0; - for (int i01 = 0; i01 < ne01; ++i01) { - dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); + for (int64_t i01 = 0; i01 < ne01; ++i01) { + dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); id += ne00; } } @@ -6446,15 +6839,13 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( if (params->type == GGML_TASK_INIT) { char * wdata = params->wdata; + const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; - for (int i13 = 0; i13 < ne13; ++i13) { - for (int i12 = 0; i12 < ne12; ++i12) { - for (int i11 = 0; i11 < ne11; ++i11) { - //for (int i10 = 0; i10 < ne10; ++i10) { - // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); - //} - quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); - wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]; + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + wdata += row_size; } } } @@ -6466,9 +6857,7 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( return; } - // TODO: do not support transposed src1 - - // parallelize by src0 rows using ggml_vec_dot_q4_1 + // parallelize by src0 rows using ggml_vec_dot_q // total rows in src0 const int nr = ne01*ne02*ne03; @@ -6481,6 +6870,7 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( const int ir1 = MIN(ir0 + dr, nr); void * wdata = params->wdata; + const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices @@ -6496,14 +6886,14 @@ static void ggml_compute_forward_mul_mat_q4_1_f32( const int i3 = i03; void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); - char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]); + char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size)); float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); assert(ne00 % 32 == 0); - for (int ic = 0; ic < ne11; ++ic) { - ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]))); + for (int64_t ic = 0; ic < ne11; ++ic) { + vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); } } @@ -6527,12 +6917,9 @@ static void ggml_compute_forward_mul_mat( struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_Q4_0: - { - ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst); - } break; case GGML_TYPE_Q4_1: { - ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst); + ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; case GGML_TYPE_F16: { @@ -6649,6 +7036,15 @@ static void ggml_compute_forward_cpy( ggml_compute_forward_dup(params, src0, dst); } +// ggml_compute_forward_cont + +static void ggml_compute_forward_cont( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, src0, dst); +} + // ggml_compute_forward_reshape static void ggml_compute_forward_reshape( @@ -6693,34 +7089,7 @@ static void ggml_compute_forward_transpose( // ggml_compute_forward_get_rows -static void ggml_compute_forward_get_rows_q4_0( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - assert(params->ith == 0); - - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { - return; - } - - const int nc = src0->ne[0]; - const int nr = ggml_nelements(src1); - - assert( dst->ne[0] == nc); - assert( dst->ne[1] == nr); - assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]); - - for (int i = 0; i < nr; ++i) { - const int r = ((int32_t *) src1->data)[i]; - - dequantize_row_q4_0( - (const void *) ((char *) src0->data + r*src0->nb[1]), - (float *) ((char *) dst->data + i*dst->nb[1]), nc); - } -} - -static void ggml_compute_forward_get_rows_q4_1( +static void ggml_compute_forward_get_rows_q( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, @@ -6733,15 +7102,17 @@ static void ggml_compute_forward_get_rows_q4_1( const int nc = src0->ne[0]; const int nr = ggml_nelements(src1); + const enum ggml_type type = src0->type; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; assert( dst->ne[0] == nc); assert( dst->ne[1] == nr); - assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]); + assert(src0->nb[0] == GGML_TYPE_SIZE[type]); for (int i = 0; i < nr; ++i) { const int r = ((int32_t *) src1->data)[i]; - dequantize_row_q4_1( + dequantize_row_q( (const void *) ((char *) src0->data + r*src0->nb[1]), (float *) ((char *) dst->data + i*dst->nb[1]), nc); } @@ -6809,12 +7180,9 @@ static void ggml_compute_forward_get_rows( struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_Q4_0: - { - ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst); - } break; case GGML_TYPE_Q4_1: { - ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst); + ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; case GGML_TYPE_F16: { @@ -6966,12 +7334,12 @@ static void ggml_compute_forward_soft_max_f32( ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max); memcpy(&scvt, &s, sizeof(scvt)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); - sum += val; + sum += (ggml_float)val; p[i] = val; } } - assert(sum > 0.0f); + assert(sum > 0.0); sum = 1.0/sum; ggml_vec_scale_f32(nc, p, sum); @@ -7014,7 +7382,6 @@ static void ggml_compute_forward_rope_f32( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - assert(params->ith == 0); assert(src1->type == GGML_TYPE_I32); assert(ggml_nelements(src1) == 3); @@ -7026,10 +7393,10 @@ static void ggml_compute_forward_rope_f32( const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; - //const int ne0 = src0->ne[0]; - const int ne1 = src0->ne[1]; - const int ne2 = src0->ne[2]; - const int ne3 = src0->ne[3]; + //const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + const int64_t ne3 = src0->ne[3]; const int nb0 = src0->nb[0]; const int nb1 = src0->nb[1]; @@ -7041,22 +7408,39 @@ static void ggml_compute_forward_rope_f32( assert(nb0 == sizeof(float)); - // TODO: optimize - for (int i3 = 0; i3 < ne3; i3++) { - for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); - for (int i1 = 0; i1 < ne1; i1++) { + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + for (int i0 = 0; i0 < n_dims; i0 += 2) { - const double theta = pow(10000.0, ((double)-i0)/n_dims); + const float theta = powf(10000.0, ((float)-i0)/n_dims); - const double cos_theta = cos(p*theta); - const double sin_theta = sin(p*theta); + const float cos_theta = cosf(p*theta); + const float sin_theta = sinf(p*theta); const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - double x0 = src[0]; - double x1 = src[1]; + const float x0 = src[0]; + const float x1 = src[1]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; @@ -7071,7 +7455,6 @@ static void ggml_compute_forward_rope_f16( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - assert(params->ith == 0); assert(src1->type == GGML_TYPE_I32); assert(ggml_nelements(src1) == 3); @@ -7083,10 +7466,10 @@ static void ggml_compute_forward_rope_f16( const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; - //const int ne0 = src0->ne[0]; - const int ne1 = src0->ne[1]; - const int ne2 = src0->ne[2]; - const int ne3 = src0->ne[3]; + //const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + const int64_t ne3 = src0->ne[3]; const int nb0 = src0->nb[0]; const int nb1 = src0->nb[1]; @@ -7098,21 +7481,39 @@ static void ggml_compute_forward_rope_f16( assert(nb0 == sizeof(ggml_fp16_t)); - for (int i3 = 0; i3 < ne3; i3++) { - for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); - for (int i1 = 0; i1 < ne1; i1++) { + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + for (int i0 = 0; i0 < n_dims; i0 += 2) { - const double theta = pow(10000.0, ((double)-i0)/n_dims); + const float theta = powf(10000.0, ((float)-i0)/n_dims); - const double cos_theta = cos(p*theta); - const double sin_theta = sin(p*theta); + const float cos_theta = cosf(p*theta); + const float sin_theta = sinf(p*theta); const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - double x0 = ggml_fp16_to_fp32(src[0]); - double x1 = ggml_fp16_to_fp32(src[1]); + const float x0 = ggml_fp16_to_fp32(src[0]); + const float x1 = ggml_fp16_to_fp32(src[1]); dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta); dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta); @@ -7162,21 +7563,21 @@ static void ggml_compute_forward_conv_1d_1s_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - //const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; - //const int ne0 = dst->ne[0]; - //const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -7213,11 +7614,11 @@ static void ggml_compute_forward_conv_1d_1s_f16_f32( { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; - for (int i00 = 0; i00 < ne00; i00++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ew0 + i01] = src[i00]; } } @@ -7228,10 +7629,10 @@ static void ggml_compute_forward_conv_1d_1s_f16_f32( { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; - for (int i11 = 0; i11 < ne11; i11++) { + for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); ggml_fp16_t * dst_data = wdata; - for (int i10 = 0; i10 < ne10; i10++) { + for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); } } @@ -7256,7 +7657,7 @@ static void ggml_compute_forward_conv_1d_1s_f16_f32( for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int i0 = 0; i0 < ne10; ++i0) { + for (int64_t i0 = 0; i0 < ne10; ++i0) { dst_data[i0] = 0; for (int k = -nh; k <= nh; k++) { float v = 0.0f; @@ -7282,21 +7683,21 @@ static void ggml_compute_forward_conv_1d_1s_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - //const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; - //const int ne0 = dst->ne[0]; - //const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -7333,11 +7734,11 @@ static void ggml_compute_forward_conv_1d_1s_f32( { float * const wdata = (float *) params->wdata + 0; - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); float * dst_data = wdata + i02*ew0*ne00; - for (int i00 = 0; i00 < ne00; i00++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ew0 + i01] = src[i00]; } } @@ -7348,10 +7749,10 @@ static void ggml_compute_forward_conv_1d_1s_f32( { float * const wdata = (float *) params->wdata + ne02*ew0*ne00; - for (int i11 = 0; i11 < ne11; i11++) { + for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); float * dst_data = wdata; - for (int i10 = 0; i10 < ne10; i10++) { + for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[(i10 + nh)*ew0 + i11] = src[i10]; } } @@ -7376,7 +7777,7 @@ static void ggml_compute_forward_conv_1d_1s_f32( for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int i0 = 0; i0 < ne10; ++i0) { + for (int64_t i0 = 0; i0 < ne10; ++i0) { dst_data[i0] = 0; for (int k = -nh; k <= nh; k++) { float v = 0.0f; @@ -7430,21 +7831,21 @@ static void ggml_compute_forward_conv_1d_2s_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - //const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; - //const int ne0 = dst->ne[0]; - //const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -7481,11 +7882,11 @@ static void ggml_compute_forward_conv_1d_2s_f16_f32( { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; - for (int i00 = 0; i00 < ne00; i00++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ew0 + i01] = src[i00]; } } @@ -7496,10 +7897,10 @@ static void ggml_compute_forward_conv_1d_2s_f16_f32( { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; - for (int i11 = 0; i11 < ne11; i11++) { + for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); ggml_fp16_t * dst_data = wdata; - for (int i10 = 0; i10 < ne10; i10++) { + for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); } } @@ -7524,7 +7925,7 @@ static void ggml_compute_forward_conv_1d_2s_f16_f32( for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int i0 = 0; i0 < ne10; i0 += 2) { + for (int64_t i0 = 0; i0 < ne10; i0 += 2) { dst_data[i0/2] = 0; for (int k = -nh; k <= nh; k++) { float v = 0.0f; @@ -7550,21 +7951,21 @@ static void ggml_compute_forward_conv_1d_2s_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; - const int ne10 = src1->ne[0]; - const int ne11 = src1->ne[1]; - //const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; - //const int ne0 = dst->ne[0]; - //const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; const int nb00 = src0->nb[0]; const int nb01 = src0->nb[1]; @@ -7601,11 +8002,11 @@ static void ggml_compute_forward_conv_1d_2s_f32( { float * const wdata = (float *) params->wdata + 0; - for (int i02 = 0; i02 < ne02; i02++) { - for (int i01 = 0; i01 < ne01; i01++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); float * dst_data = wdata + i02*ew0*ne00; - for (int i00 = 0; i00 < ne00; i00++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { dst_data[i00*ew0 + i01] = src[i00]; } } @@ -7616,10 +8017,10 @@ static void ggml_compute_forward_conv_1d_2s_f32( { float * const wdata = (float *) params->wdata + ne02*ew0*ne00; - for (int i11 = 0; i11 < ne11; i11++) { + for (int64_t i11 = 0; i11 < ne11; i11++) { const float * const src = (float *)((char *) src1->data + i11*nb11); float * dst_data = wdata; - for (int i10 = 0; i10 < ne10; i10++) { + for (int64_t i10 = 0; i10 < ne10; i10++) { dst_data[(i10 + nh)*ew0 + i11] = src[i10]; } } @@ -7644,7 +8045,7 @@ static void ggml_compute_forward_conv_1d_2s_f32( for (int i1 = ir0; i1 < ir1; i1++) { float * dst_data = (float *)((char *) dst->data + i1*nb1); - for (int i0 = 0; i0 < ne10; i0 += 2) { + for (int64_t i0 = 0; i0 < ne10; i0 += 2) { dst_data[i0/2] = 0; for (int k = -nh; k <= nh; k++) { float v = 0.0f; @@ -7696,25 +8097,25 @@ static void ggml_compute_forward_flash_attn_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int neq0 = q->ne[0]; - const int neq1 = q->ne[1]; - const int neq2 = q->ne[2]; - const int neq3 = q->ne[3]; + const int64_t neq0 = q->ne[0]; + const int64_t neq1 = q->ne[1]; + const int64_t neq2 = q->ne[2]; + const int64_t neq3 = q->ne[3]; - const int nek0 = k->ne[0]; - const int nek1 = k->ne[1]; - //const int nek2 = k->ne[2]; - //const int nek3 = k->ne[3]; + const int64_t nek0 = k->ne[0]; + const int64_t nek1 = k->ne[1]; + //const int64_t nek2 = k->ne[2]; + //const int64_t nek3 = k->ne[3]; - //const int nev0 = v->ne[0]; - const int nev1 = v->ne[1]; - //const int nev2 = v->ne[2]; - //const int nev3 = v->ne[3]; + //const int64_t nev0 = v->ne[0]; + const int64_t nev1 = v->ne[1]; + //const int64_t nev2 = v->ne[2]; + //const int64_t nev3 = v->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; const int nbk0 = k->nb[0]; const int nbk1 = k->nb[1]; @@ -7739,10 +8140,10 @@ static void ggml_compute_forward_flash_attn_f32( const int ith = params->ith; const int nth = params->nth; - const int D = neq0; - const int N = neq1; - const int P = nek1 - N; - const int M = P + N; + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); @@ -7788,7 +8189,7 @@ static void ggml_compute_forward_flash_attn_f32( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - const float scale = 1.0/sqrt((double) D); + const float scale = 1.0f/sqrtf(D); //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); @@ -7804,7 +8205,7 @@ static void ggml_compute_forward_flash_attn_f32( S[i] = -INFINITY; } - for (int ic = 0; ic < nek1; ++ic) { + for (int64_t ic = 0; ic < nek1; ++ic) { // k indices const int ik3 = iq3; const int ik2 = iq2; @@ -7823,7 +8224,7 @@ static void ggml_compute_forward_flash_attn_f32( ggml_vec_scale_f32(nek1, S, scale); if (masked) { - for (int i = P; i < M; i++) { + for (int64_t i = P; i < M; i++) { if (i > P + iq1) { S[i] = -INFINITY; } @@ -7835,7 +8236,7 @@ static void ggml_compute_forward_flash_attn_f32( float max = -INFINITY; ggml_vec_max_f32(M, &max, S); - float sum = 0.0f; + ggml_float sum = 0.0; { #ifdef GGML_SOFT_MAX_ACCELERATE max = -max; @@ -7856,7 +8257,7 @@ static void ggml_compute_forward_flash_attn_f32( ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); memcpy(&scvt[j], &s, sizeof(uint16_t)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); - sump[j] += val; + sump[j] += (ggml_float)val; SS[j] = val; } } @@ -7868,7 +8269,7 @@ static void ggml_compute_forward_flash_attn_f32( #endif } - assert(sum > 0.0f); + assert(sum > 0.0); sum = 1.0/sum; ggml_vec_scale_f32(M, S, sum); @@ -7881,7 +8282,7 @@ static void ggml_compute_forward_flash_attn_f32( #endif } - for (int ic = 0; ic < nev1; ++ic) { + for (int64_t ic = 0; ic < nev1; ++ic) { // dst indices const int i1 = iq1; const int i2 = iq2; @@ -7905,25 +8306,25 @@ static void ggml_compute_forward_flash_attn_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int neq0 = q->ne[0]; - const int neq1 = q->ne[1]; - const int neq2 = q->ne[2]; - const int neq3 = q->ne[3]; + const int64_t neq0 = q->ne[0]; + const int64_t neq1 = q->ne[1]; + const int64_t neq2 = q->ne[2]; + const int64_t neq3 = q->ne[3]; - const int nek0 = k->ne[0]; - const int nek1 = k->ne[1]; - //const int nek2 = k->ne[2]; - //const int nek3 = k->ne[3]; + const int64_t nek0 = k->ne[0]; + const int64_t nek1 = k->ne[1]; + //const int64_t nek2 = k->ne[2]; + //const int64_t nek3 = k->ne[3]; - //const int nev0 = v->ne[0]; - const int nev1 = v->ne[1]; - //const int nev2 = v->ne[2]; - //const int nev3 = v->ne[3]; + //const int64_t nev0 = v->ne[0]; + const int64_t nev1 = v->ne[1]; + //const int64_t nev2 = v->ne[2]; + //const int64_t nev3 = v->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - //const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; const int nbk0 = k->nb[0]; const int nbk1 = k->nb[1]; @@ -7948,10 +8349,10 @@ static void ggml_compute_forward_flash_attn_f16( const int ith = params->ith; const int nth = params->nth; - const int D = neq0; - const int N = neq1; - const int P = nek1 - N; - const int M = P + N; + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); @@ -7997,7 +8398,7 @@ static void ggml_compute_forward_flash_attn_f16( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - const float scale = 1.0/sqrt((double) D); + const float scale = 1.0f/sqrtf(D); //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); @@ -8014,7 +8415,7 @@ static void ggml_compute_forward_flash_attn_f16( } if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) { - for (int ic = 0; ic < nek1; ++ic) { + for (int64_t ic = 0; ic < nek1; ++ic) { // k indices const int ik3 = iq3; const int ik2 = iq2; @@ -8029,7 +8430,7 @@ static void ggml_compute_forward_flash_attn_f16( (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); } } else { - for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { + for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { // k indices const int ik3 = iq3; const int ik2 = iq2; @@ -8049,7 +8450,7 @@ static void ggml_compute_forward_flash_attn_f16( ggml_vec_scale_f32(nek1, S, scale); if (masked) { - for (int i = P; i < M; i++) { + for (int64_t i = P; i < M; i++) { if (i > P + iq1) { S[i] = -INFINITY; } @@ -8061,7 +8462,7 @@ static void ggml_compute_forward_flash_attn_f16( float max = -INFINITY; ggml_vec_max_f32(M, &max, S); - float sum = 0.0f; + ggml_float sum = 0.0; { #ifdef GGML_SOFT_MAX_ACCELERATE max = -max; @@ -8082,7 +8483,7 @@ static void ggml_compute_forward_flash_attn_f16( ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); memcpy(&scvt[j], &s, sizeof(uint16_t)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); - sump[j] += val; + sump[j] += (ggml_float)val; SS[j] = val; } } @@ -8094,7 +8495,7 @@ static void ggml_compute_forward_flash_attn_f16( #endif } - assert(sum > 0.0f); + assert(sum > 0.0); sum = 1.0/sum; ggml_vec_scale_f32(M, S, sum); @@ -8109,12 +8510,12 @@ static void ggml_compute_forward_flash_attn_f16( ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup); - for (int i = 0; i < M; i++) { + for (int64_t i = 0; i < M; i++) { S16[i] = GGML_FP32_TO_FP16(S[i]); } if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { - for (int ic = 0; ic < nev1; ++ic) { + for (int64_t ic = 0; ic < nev1; ++ic) { // dst indices const int i1 = iq1; const int i2 = iq2; @@ -8126,7 +8527,7 @@ static void ggml_compute_forward_flash_attn_f16( S16); } } else { - for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) { + for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) { // dst indices const int i1 = iq1; const int i2 = iq2; @@ -8182,35 +8583,35 @@ static void ggml_compute_forward_flash_ff_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int nea0 = a->ne[0]; - const int nea1 = a->ne[1]; - const int nea2 = a->ne[2]; - const int nea3 = a->ne[3]; + const int64_t nea0 = a->ne[0]; + const int64_t nea1 = a->ne[1]; + const int64_t nea2 = a->ne[2]; + const int64_t nea3 = a->ne[3]; - const int neb00 = b0->ne[0]; - const int neb01 = b0->ne[1]; - //const int neb02 = b0->ne[2]; - //const int neb03 = b0->ne[3]; + const int64_t neb00 = b0->ne[0]; + const int64_t neb01 = b0->ne[1]; + //const int64_t neb02 = b0->ne[2]; + //const int64_t neb03 = b0->ne[3]; - const int neb10 = b1->ne[0]; - const int neb11 = b1->ne[1]; - //const int neb12 = b1->ne[2]; - //const int neb13 = b1->ne[3]; + const int64_t neb10 = b1->ne[0]; + const int64_t neb11 = b1->ne[1]; + //const int64_t neb12 = b1->ne[2]; + //const int64_t neb13 = b1->ne[3]; - const int nec00 = c0->ne[0]; - const int nec01 = c0->ne[1]; - //const int nec02 = c0->ne[2]; - //const int nec03 = c0->ne[3]; + const int64_t nec00 = c0->ne[0]; + const int64_t nec01 = c0->ne[1]; + //const int64_t nec02 = c0->ne[2]; + //const int64_t nec03 = c0->ne[3]; - const int nec10 = c1->ne[0]; - const int nec11 = c1->ne[1]; - //const int nec12 = c1->ne[2]; - //const int nec13 = c1->ne[3]; + const int64_t nec10 = c1->ne[0]; + const int64_t nec11 = c1->ne[1]; + //const int64_t nec12 = c1->ne[2]; + //const int64_t nec13 = c1->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; const int nba0 = a->nb[0]; const int nba1 = a->nb[1]; @@ -8245,9 +8646,9 @@ static void ggml_compute_forward_flash_ff_f16( const int ith = params->ith; const int nth = params->nth; - const int D = nea0; - //const int N = nea1; - const int M = neb01; + const int64_t D = nea0; + //const int64_t N = nea1; + const int64_t M = neb01; GGML_ASSERT(ne0 == nea0); GGML_ASSERT(ne1 == nea1); @@ -8303,7 +8704,7 @@ static void ggml_compute_forward_flash_ff_f16( float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); - for (int ic = 0; ic < neb01; ++ic) { + for (int64_t ic = 0; ic < neb01; ++ic) { // b0 indices const int ib03 = ia3; const int ib02 = ia2; @@ -8323,7 +8724,7 @@ static void ggml_compute_forward_flash_ff_f16( ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); - for (int i = 0; i < M; i++) { + for (int64_t i = 0; i < M; i++) { S16[i] = GGML_FP32_TO_FP16(S[i]); } @@ -8335,7 +8736,7 @@ static void ggml_compute_forward_flash_ff_f16( const int i2 = ia2; const int i3 = ia3; - for (int ic = 0; ic < nec01; ++ic) { + for (int64_t ic = 0; ic < nec01; ++ic) { ggml_vec_dot_f16(neb01, (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), @@ -8474,6 +8875,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_cpy(params, tensor->src0, tensor); } break; + case GGML_OP_CONT: + { + ggml_compute_forward_cont(params, tensor->src0, tensor); + } break; case GGML_OP_RESHAPE: { ggml_compute_forward_reshape(params, tensor->src0, tensor); @@ -8718,8 +9123,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor src1->grad = ggml_add_impl(ctx, src1->grad, - // TODO: fix transpose, the node will break the graph connections - ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad), + ggml_mul_mat(ctx, + ggml_cont(ctx, ggml_transpose(ctx, src0)), + tensor->grad), inplace); } } break; @@ -8731,6 +9137,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_CONT: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_RESHAPE: { GGML_ASSERT(false); // TODO: not implemented @@ -9147,8 +9557,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) size_t cur = 0; - if (node->src0->type == GGML_TYPE_F16 && - node->src1->type == GGML_TYPE_F32) { + if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing @@ -9163,33 +9572,18 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) #else cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); #endif - } else if (node->src0->type == GGML_TYPE_F32 && - node->src1->type == GGML_TYPE_F32) { + } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { cur = 0; - } else if (node->src0->type == GGML_TYPE_Q4_0 && - node->src1->type == GGML_TYPE_F32) { + } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) { #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - } else { - cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]; - } -#else - cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]; + } else #endif - } else if (node->src0->type == GGML_TYPE_Q4_1 && - node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { - node->n_tasks = 1; - cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - } else { - cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]; + { + cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type]; } -#else - cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]; -#endif } else { GGML_ASSERT(false); } @@ -9201,6 +9595,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) node->n_tasks = n_threads; } break; case GGML_OP_CPY: + case GGML_OP_CONT: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: @@ -9216,7 +9611,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } break; case GGML_OP_ROPE: { - node->n_tasks = 1; + node->n_tasks = n_threads; } break; case GGML_OP_CONV_1D_1S: case GGML_OP_CONV_1D_2S: @@ -9254,7 +9649,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) size_t cur = 0; - const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); + const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); if (node->src1->type == GGML_TYPE_F32) { cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1) @@ -9513,7 +9908,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { perf_total_per_op_us[node->op] += node->perf_time_us; - GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", + GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, @@ -9527,7 +9922,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { for (int i = 0; i < cgraph->n_leafs; i++) { struct ggml_tensor * node = cgraph->leafs[i]; - GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n", + GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n", i, node->ne[0], node->ne[1], GGML_OP_LABEL[node->op]); @@ -9598,7 +9993,7 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph fprintf(fp, " \"%p\" [ \ style = filled; fillcolor = %s; shape = record; \ -label=\"%d [%d, %d] | %s", +label=\"%d [%" PRId64 ", %" PRId64 "] | %s", (void *) node, color, i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]); @@ -9619,11 +10014,11 @@ label=\"%d [%d, %d] | %s", fprintf(fp, " \"%p\" [ \ style = filled; fillcolor = %s; shape = record; \ label=\"%.1e\"; ]\n", - (void *) node, color, ggml_get_f32_1d(node, 0)); + (void *) node, color, (double)ggml_get_f32_1d(node, 0)); } else { fprintf(fp, " \"%p\" [ \ style = filled; fillcolor = %s; shape = record; \ -label=\"CONST %d [%d, %d]\"; ]\n", +label=\"CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n", (void *) node, color, i, node->ne[0], node->ne[1]); } @@ -9687,9 +10082,9 @@ label=\"CONST %d [%d, %d]\"; ]\n", static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) { int i = 0; for (int p = 0; p < np; ++p) { - const int ne = ggml_nelements(ps[p]) ; + const int64_t ne = ggml_nelements(ps[p]) ; // TODO: add function to set tensor from array - for (int j = 0; j < ne; ++j) { + for (int64_t j = 0; j < ne; ++j) { ggml_set_f32_1d(ps[p], j, x[i++]); } } @@ -9698,9 +10093,9 @@ static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const f static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) { int i = 0; for (int p = 0; p < np; ++p) { - const int ne = ggml_nelements(ps[p]) ; + const int64_t ne = ggml_nelements(ps[p]) ; // TODO: add function to get all elements at once - for (int j = 0; j < ne; ++j) { + for (int64_t j = 0; j < ne; ++j) { x[i++] = ggml_get_f32_1d(ps[p], j); } } @@ -9709,9 +10104,9 @@ static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { int i = 0; for (int p = 0; p < np; ++p) { - const int ne = ggml_nelements(ps[p]) ; + const int64_t ne = ggml_nelements(ps[p]) ; // TODO: add function to get all elements at once - for (int j = 0; j < ne; ++j) { + for (int64_t j = 0; j < ne; ++j) { g[i++] = ggml_get_f32_1d(ps[p]->grad, j); } } @@ -9857,7 +10252,7 @@ static enum ggml_opt_result ggml_opt_adam( if (params.past <= t) { const float rate = (pf[t%params.past] - fx)/fx; - if (fabs(rate) < params.delta) { + if (fabsf(rate) < params.delta) { return GGML_OPT_OK; } } @@ -9936,7 +10331,7 @@ static enum ggml_opt_result linesearch_backtracking( const float dec = 0.5f; const float inc = 2.1f; - if (*step <= 0.) { + if (*step <= 0.f) { return GGML_LINESEARCH_INVALID_PARAMETERS; } @@ -10024,7 +10419,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( struct ggml_cgraph * gb) { if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { - if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) { + if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) { return GGML_OPT_INVALID_WOLFE; } } @@ -10145,8 +10540,8 @@ static enum ggml_opt_result ggml_opt_lbfgs( GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0)); - if (xnorm < 1.0) { - xnorm = 1.0; + if (xnorm < 1.0f) { + xnorm = 1.0f; } if (gnorm/xnorm <= params.lbfgs.eps) { // converged @@ -10159,7 +10554,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( if (params.past <= k) { const float rate = (pf[k%params.past] - fx)/fx; - if (fabs(rate) < params.delta) { + if (fabsf(rate) < params.delta) { return GGML_OPT_OK; } } @@ -10309,6 +10704,7 @@ enum ggml_opt_result ggml_opt( struct ggml_init_params params_ctx = { .mem_size = 16*1024*1024, .mem_buffer = NULL, + .no_alloc = false, }; ctx = ggml_init(params_ctx); @@ -10355,64 +10751,50 @@ enum ggml_opt_result ggml_opt( //////////////////////////////////////////////////////////////////////////////// -size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) { - const int nb = k / qk; - const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2); - const size_t row_size = nb*bs; - - assert(k % qk == 0); - - char * pdst = (char *) dst; +size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK == 0); + const int nb = k / QK; for (int j = 0; j < n; j += k) { - uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs); - uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float)); + block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK; - quantize_row_q4_0_reference(src + j, pd, k); + quantize_row_q4_0_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < qk; l += 2) { - const uint8_t vi0 = pb[l/2] & 0xF; - const uint8_t vi1 = pb[l/2] >> 4; + for (int l = 0; l < QK; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0xF; + const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; hist[vi1]++; } - pb += bs; } } - return (n/k)*row_size; + return (n/QK*sizeof(block_q4_0)); } -size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) { - const int nb = k / qk; - const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2); - const size_t row_size = nb*bs; - - assert(k % qk == 0); - - char * pdst = (char *) dst; +size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK == 0); + const int nb = k / QK; for (int j = 0; j < n; j += k) { - uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs); - uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float)); + block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK; - quantize_row_q4_1(src + j, pd, k); + quantize_row_q4_1_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < qk; l += 2) { - const uint8_t vi0 = pb[l/2] & 0xF; - const uint8_t vi1 = pb[l/2] >> 4; + for (int l = 0; l < QK; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0xF; + const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; hist[vi1]++; } - pb += bs; } } - return (n/k)*row_size; + return (n/QK*sizeof(block_q4_1)); } //////////////////////////////////////////////////////////////////////////////// diff --git a/ggml.h b/ggml.h index ddb97318b33..a5245a8ae62 100644 --- a/ggml.h +++ b/ggml.h @@ -236,6 +236,7 @@ enum ggml_op { GGML_OP_SCALE, GGML_OP_CPY, + GGML_OP_CONT, GGML_OP_RESHAPE, GGML_OP_VIEW, GGML_OP_PERMUTE, @@ -253,16 +254,29 @@ enum ggml_op { GGML_OP_COUNT, }; + +// ggml object +struct ggml_object { + size_t offs; + size_t size; + + struct ggml_object * next; + + char padding[8]; +}; + +static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); + // n-dimensional tensor struct ggml_tensor { enum ggml_type type; int n_dims; - int ne[GGML_MAX_DIMS]; // number of elements - size_t nb[GGML_MAX_DIMS]; // stride in bytes: - // nb[0] = sizeof(type) - // nb[1] = nb[0] * ne[0] + padding - // nb[i] = nb[i-1] * ne[i-1] + int64_t ne[GGML_MAX_DIMS]; // number of elements + size_t nb[GGML_MAX_DIMS]; // stride in bytes: + // nb[0] = sizeof(type) + // nb[1] = nb[0] * ne[0] + padding + // nb[i] = nb[i-1] * ne[i-1] // compute data enum ggml_op op; @@ -316,6 +330,7 @@ struct ggml_init_params { // memory pool size_t mem_size; // bytes void * mem_buffer; // if NULL, memory will be allocated internally + bool no_alloc; // don't allocate memory for the tensor data }; void ggml_time_init(void); // call this once at the beginning of the program @@ -327,8 +342,8 @@ int64_t ggml_cycles_per_ms(void); void ggml_print_object (const struct ggml_object * obj); void ggml_print_objects(const struct ggml_context * ctx); -int ggml_nelements(const struct ggml_tensor * tensor); -size_t ggml_nbytes (const struct ggml_tensor * tensor); +int64_t ggml_nelements(const struct ggml_tensor * tensor); +size_t ggml_nbytes (const struct ggml_tensor * tensor); int ggml_blck_size (enum ggml_type type); size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block @@ -343,40 +358,37 @@ size_t ggml_used_mem(const struct ggml_context * ctx); size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch); -bool ggml_mlock_supported(void); -bool ggml_mlock(struct ggml_context * ctx, char ** err_p); - struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, enum ggml_type type, int n_dims, - const int *ne); + const int64_t *ne); struct ggml_tensor * ggml_new_tensor_1d( struct ggml_context * ctx, enum ggml_type type, - int ne0); + int64_t ne0); struct ggml_tensor * ggml_new_tensor_2d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1); + int64_t ne0, + int64_t ne1); struct ggml_tensor * ggml_new_tensor_3d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1, - int ne2); + int64_t ne0, + int64_t ne1, + int64_t ne2); struct ggml_tensor * ggml_new_tensor_4d( struct ggml_context * ctx, enum ggml_type type, - int ne0, - int ne1, - int ne2, - int ne3); + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); @@ -514,6 +526,11 @@ struct ggml_tensor * ggml_cpy( struct ggml_tensor * a, struct ggml_tensor * b); +// make contiguous +struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a); + // return view(a), b specifies the new shape // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape( @@ -526,33 +543,43 @@ struct ggml_tensor * ggml_reshape( struct ggml_tensor * ggml_reshape_2d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1); + int64_t ne0, + int64_t ne1); // return view(a) // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape_3d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1, - int ne2); + int64_t ne0, + int64_t ne1, + int64_t ne2); // offset in bytes struct ggml_tensor * ggml_view_1d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, + int64_t ne0, size_t offset); struct ggml_tensor * ggml_view_2d( struct ggml_context * ctx, struct ggml_tensor * a, - int ne0, - int ne1, + int64_t ne0, + int64_t ne1, size_t nb1, // row stride in bytes size_t offset); +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, // row stride in bytes + size_t nb2, // slice stride in bytes + size_t offset); + struct ggml_tensor * ggml_permute( struct ggml_context * ctx, struct ggml_tensor * a, @@ -748,8 +775,8 @@ enum ggml_opt_result ggml_opt( // quantization // -size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist); -size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist); +size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist); +size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist); // // system info @@ -768,6 +795,30 @@ int ggml_cpu_has_blas(void); int ggml_cpu_has_sse3(void); int ggml_cpu_has_vsx(void); + +// +// Internal types and functions exposed for tests and benchmarks +// + +#ifdef __cplusplus +// restrict not standard in C++ +#define GGML_RESTRICT +#else +#define GGML_RESTRICT restrict +#endif +typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); +typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); +typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); + +typedef struct { + dequantize_row_q_t dequantize_row_q; + quantize_row_q_t quantize_row_q; + quantize_row_q_t quantize_row_q_reference; + vec_dot_q_t vec_dot_q; +} quantize_fns_t; + +quantize_fns_t ggml_internal_get_quantize_fn(size_t i); + #ifdef __cplusplus } #endif diff --git a/whisper.cpp b/whisper.cpp index 95b6d33905d..24b9e5d8bd0 100644 --- a/whisper.cpp +++ b/whisper.cpp @@ -654,9 +654,11 @@ static bool kv_cache_init( int n_ctx) { cache.buf.resize(mem_bytes); - struct ggml_init_params params; - params.mem_size = cache.buf.size(); - params.mem_buffer = cache.buf.data(); + struct ggml_init_params params = { + /*.mem_size =*/ cache.buf.size(), + /*.mem_buffer =*/ cache.buf.data(), + /*.no_alloc =*/ false, + }; cache.ctx = ggml_init(params); @@ -688,9 +690,11 @@ static bool kv_cache_reinit(struct whisper_kv_cache & cache) { WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_size(wtype)); - struct ggml_init_params params; - params.mem_size = cache.buf.size(); - params.mem_buffer = cache.buf.data(); + struct ggml_init_params params = { + /*.mem_size =*/ cache.buf.size(), + /*.mem_buffer =*/ cache.buf.data(), + /*.no_alloc =*/ false, + }; cache.ctx = ggml_init(params); @@ -1028,9 +1032,11 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con // create the ggml context { - struct ggml_init_params params; - params.mem_size = wctx.model.buf->size(); - params.mem_buffer = wctx.model.buf->data(); + struct ggml_init_params params = { + /*.mem_size =*/ wctx.model.buf->size(), + /*.mem_buffer =*/ wctx.model.buf->data(), + /*.no_alloc =*/ false, + }; model.ctx = ggml_init(params); if (!model.ctx) { @@ -1254,10 +1260,12 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con break; } - int32_t nelements = 1; - int32_t ne[3] = { 1, 1, 1 }; + int64_t nelements = 1; + int64_t ne[3] = { 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { - read_safe(loader, ne[i]); + int32_t ne_cur; + read_safe(loader, ne_cur); + ne[i] = ne_cur; nelements *= ne[i]; } @@ -1278,7 +1286,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%lld, %lld, %lld], expected [%lld, %lld, %lld]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); return false; } @@ -1286,7 +1294,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); if (nelements*bpe != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %llu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } @@ -1344,9 +1352,11 @@ static bool whisper_encode_internal( const int n_mels = hparams.n_mels; assert(mel_inp.n_mel == n_mels); - struct ggml_init_params params; - params.mem_size = wstate.buf_compute.size(); - params.mem_buffer = wstate.buf_compute.data(); + struct ggml_init_params params = { + /*.mem_size =*/ wstate.buf_compute.size(), + /*.mem_buffer =*/ wstate.buf_compute.data(), + /*.no_alloc =*/ false, + }; struct ggml_context * ctx0 = ggml_init(params); @@ -1501,8 +1511,7 @@ static bool whisper_encode_internal( Vcur, n_state/n_head, n_head, n_ctx), 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head) - ); + ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head)); struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, false); #else @@ -1726,10 +1735,12 @@ static bool whisper_encode_internal( wstate.use_buf(ctx0, -1); - //struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx)); - //struct ggml_tensor * v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.v)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx)); - struct ggml_tensor* k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx)); - struct ggml_tensor* v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.v)*n_state)*(il*n_ctx)); + Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx)); + + struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx)); + struct ggml_tensor * v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state, + ( n_ctx)*ggml_element_size(wstate.kv_cross.v), + (il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); @@ -1797,9 +1808,11 @@ static bool whisper_decode_internal( //WHISPER_PRINT_DEBUG("%s: n_past = %d, N = %d, M = %d, n_ctx = %d\n", __func__, n_past, N, M, n_ctx); - struct ggml_init_params params; - params.mem_size = wstate.buf_compute.size(); - params.mem_buffer = wstate.buf_compute.data(); + struct ggml_init_params params = { + /*.mem_size =*/ wstate.buf_compute.size(), + /*.mem_buffer =*/ wstate.buf_compute.data(), + /*.no_alloc =*/ false, + }; struct ggml_context * ctx0 = ggml_init(params); @@ -1862,20 +1875,24 @@ static bool whisper_decode_internal( Kcur = ggml_scale(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, - layer.attn_v_w, - cur); - - Vcur = ggml_add(ctx0, - ggml_repeat(ctx0, - layer.attn_v_b, - Vcur), - Vcur); - // store key and value to memory { + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctx0, + ggml_repeat(ctx0, + layer.attn_v_b, + Vcur), + Vcur); + + Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, N)); + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_state, (ggml_element_size(kv_self.v)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_state, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_state + n_past*ggml_element_size(kv_self.v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); @@ -1914,16 +1931,14 @@ static bool whisper_decode_internal( struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - struct ggml_tensor * V_trans = - ggml_cpy(ctx0, - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.v)*n_state), - n_state/n_head, n_head, n_past + N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_state/n_head, n_head)); + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_past + N, n_state/n_head, n_head, + n_ctx*ggml_element_size(kv_self.v), + n_ctx*ggml_element_size(kv_self.v)*n_state/n_head, + il*n_ctx*ggml_element_size(kv_self.v)*n_state); - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); @@ -1986,15 +2001,22 @@ static bool whisper_decode_internal( ggml_view_1d(ctx0, wstate.kv_cross.k, M*n_state, il*M*ggml_element_size(wstate.kv_cross.k)*n_state), n_state/n_head, n_head, M); - struct ggml_tensor * Vcross = - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state), - n_state/n_head, n_head, M); + //struct ggml_tensor * Vcross = + // ggml_reshape_3d(ctx0, + // ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state), + // n_state/n_head, n_head, M); - struct ggml_tensor * V_trans = - ggml_cpy(ctx0, - ggml_permute(ctx0, Vcross, 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head)); + //struct ggml_tensor * V_trans = + // ggml_cpy(ctx0, + // ggml_permute(ctx0, Vcross, 1, 2, 0, 3), + // ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head)); + + struct ggml_tensor * V = + ggml_view_3d(ctx0, wstate.kv_cross.v, + M, n_state/n_head, n_head, + M*ggml_element_size(wstate.kv_cross.v), + M*ggml_element_size(wstate.kv_cross.v)*n_state/n_head, + il*M*ggml_element_size(wstate.kv_cross.v)*n_state); // ------ @@ -2021,7 +2043,7 @@ static bool whisper_decode_internal( struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ); - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); @@ -4726,6 +4748,7 @@ WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) { struct ggml_init_params gparams = { /*.mem_size =*/ buf.size(), /*.mem_buffer =*/ buf.data(), + /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(gparams);