From 3b1aacbe6d456ffbbe5aa51df9646241757f4dad Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 9 Dec 2022 20:38:10 +0200 Subject: [PATCH] talk : talk with AI in the terminal --- .gitignore | 1 + Makefile | 5 +- README.md | 2 +- examples/CMakeLists.txt | 1 + examples/command/command.cpp | 1 - examples/talk.wasm/README.md | 2 + examples/talk/.gitignore | 1 + examples/talk/CMakeLists.txt | 7 + examples/talk/README.md | 33 ++ examples/talk/gpt-2.cpp | 925 +++++++++++++++++++++++++++++++++++ examples/talk/gpt-2.h | 27 + examples/talk/speak.sh | 17 + examples/talk/talk.cpp | 733 +++++++++++++++++++++++++++ ggml.c | 3 +- 14 files changed, 1753 insertions(+), 5 deletions(-) create mode 100644 examples/talk/.gitignore create mode 100644 examples/talk/CMakeLists.txt create mode 100644 examples/talk/README.md create mode 100644 examples/talk/gpt-2.cpp create mode 100644 examples/talk/gpt-2.h create mode 100755 examples/talk/speak.sh create mode 100644 examples/talk/talk.cpp diff --git a/.gitignore b/.gitignore index 9ac0c72bd95..2871f237d0a 100644 --- a/.gitignore +++ b/.gitignore @@ -14,6 +14,7 @@ build-sanitize-thread/ main stream command +talk bench sync.sh libwhisper.so diff --git a/Makefile b/Makefile index 06fa3f299d4..a52df41f9c0 100644 --- a/Makefile +++ b/Makefile @@ -154,7 +154,7 @@ libwhisper.so: ggml.o whisper.o $(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS) clean: - rm -f *.o main stream command bench libwhisper.a libwhisper.so + rm -f *.o main stream command talk bench libwhisper.a libwhisper.so # # Examples @@ -172,6 +172,9 @@ stream: examples/stream/stream.cpp ggml.o whisper.o command: examples/command/command.cpp ggml.o whisper.o $(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS) +talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o + $(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS) + bench: examples/bench/bench.cpp ggml.o whisper.o $(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS) diff --git a/README.md b/README.md index b8c36f8ed84..67fb611a4c9 100644 --- a/README.md +++ b/README.md @@ -462,7 +462,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch | [bench](examples/bench) | | Benchmark the performance of Whisper on your machine | | [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture | | [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic | -| | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot in your browser | +| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot | | [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp | | [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim | | [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture | diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index b03694ef317..171d46ad5bd 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -28,4 +28,5 @@ else() add_subdirectory(stream) add_subdirectory(command) add_subdirectory(bench) + add_subdirectory(talk) endif() diff --git a/examples/command/command.cpp b/examples/command/command.cpp index 9cc6dce9a4b..459f5030cf8 100644 --- a/examples/command/command.cpp +++ b/examples/command/command.cpp @@ -34,7 +34,6 @@ struct whisper_params { bool speed_up = false; bool translate = false; - bool no_context = true; bool print_special = false; bool print_energy = false; bool no_timestamps = true; diff --git a/examples/talk.wasm/README.md b/examples/talk.wasm/README.md index 9d8c8b193c8..c9f4aa6019a 100644 --- a/examples/talk.wasm/README.md +++ b/examples/talk.wasm/README.md @@ -6,6 +6,8 @@ Talk with an Artificial Intelligence in your browser: Online demo: https://whisper.ggerganov.com/talk/ +Terminal version: [examples/talk](/examples/talk) + ## How it works? This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser: diff --git a/examples/talk/.gitignore b/examples/talk/.gitignore new file mode 100644 index 00000000000..67403ae5dca --- /dev/null +++ b/examples/talk/.gitignore @@ -0,0 +1 @@ +eleven-labs.py diff --git a/examples/talk/CMakeLists.txt b/examples/talk/CMakeLists.txt new file mode 100644 index 00000000000..187e1736958 --- /dev/null +++ b/examples/talk/CMakeLists.txt @@ -0,0 +1,7 @@ +if (WHISPER_SUPPORT_SDL2) + # talk + set(TARGET talk) + add_executable(${TARGET} talk.cpp gpt-2.cpp) + target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS}) + target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT}) +endif () diff --git a/examples/talk/README.md b/examples/talk/README.md new file mode 100644 index 00000000000..6923e890f75 --- /dev/null +++ b/examples/talk/README.md @@ -0,0 +1,33 @@ +# talk + +Talk with an Artificial Intelligence in your terminal + +[Demo Talk](https://user-images.githubusercontent.com/1991296/206805012-48e71cc2-588d-4745-8798-c1c70ea3b40d.mp4) + +Web version: [examples/talk.wasm](/examples/talk.wasm) + +## Building + +The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this: + +```bash +# Install SDL2 on Linux +sudo apt-get install libsdl2-dev + +# Install SDL2 on Mac OS +brew install sdl2 + +# Build the "talk" executable +make talk + +# Run it +./talk -p Santa +``` + +To run this, you will need a ggml GPT-2 model: [instructions](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2#downloading-and-converting-the-original-models) + +Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this: + +``` +wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://ggml.ggerganov.com/ggml-model-gpt-2-117M.bin +``` diff --git a/examples/talk/gpt-2.cpp b/examples/talk/gpt-2.cpp new file mode 100644 index 00000000000..1adb9778fc3 --- /dev/null +++ b/examples/talk/gpt-2.cpp @@ -0,0 +1,925 @@ +#include "ggml.h" +#include "gpt-2.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/////////////////////// GPT-2 BEGIN ///////////////////////// + +// +// Vocab utils +// + +std::vector gpt_tokenize(const gpt_vocab & vocab, const std::string & text) { + std::vector words; + + // first split the text into words + { + std::string str = text; + std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; + + std::regex re(pat); + std::smatch m; + + while (std::regex_search(str, m, re)) { + for (auto x : m) { + words.push_back(x); + } + str = m.suffix(); + } + } + + // find the longest tokens that form the words: + std::vector tokens; + for (const auto & word : words) { + if (word.size() == 0) continue; + + int i = 0; + int n = word.size(); + while (i < n) { + int j = n; + while (j > i) { + auto it = vocab.token_to_id.find(word.substr(i, j-i)); + if (it != vocab.token_to_id.end()) { + tokens.push_back(it->second); + i = j; + break; + } + --j; + } + if (i == n) { + break; + } + if (j == i) { + auto sub = word.substr(i, 1); + if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) { + tokens.push_back(vocab.token_to_id.at(sub)); + } else { + fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data()); + } + ++i; + } + } + } + + return tokens; +} + +gpt_vocab::id gpt_sample_top_k_top_p( + const gpt_vocab & vocab, + const float * logits, + int top_k, + double top_p, + double temp, + std::mt19937 & rng) { + int n_logits = vocab.id_to_token.size(); + + std::vector> logits_id; + logits_id.reserve(n_logits); + + for (int i = 0; i < n_logits; i++) { + logits_id.push_back(std::make_pair(logits[i], i)); + } + + // find the top K tokens + std::partial_sort( + logits_id.begin(), + logits_id.begin() + top_k, logits_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + logits_id.resize(top_k); + + // normalize + { + double sum = 0.0f; + for (int i = 0; i < (int)logits_id.size(); i++) { + sum += logits_id[i].first; + } + + sum = 1.0/sum; + for (int i = 0; i < (int)logits_id.size(); i++) { + logits_id[i].first *= sum; + } + } + + if (top_p < 1.0f) { + { + double cumsum = 0.0f; + for (int i = 0; i < top_k; i++) { + cumsum += logits_id[i].first; + if (cumsum >= top_p) { + logits_id.resize(i+1); + break; + } + } + } + + // normalize again + { + double sum = 0.0f; + for (int i = 0; i < (int)logits_id.size(); i++) { + sum += logits_id[i].first; + } + + sum = 1.0/sum; + for (int i = 0; i < (int)logits_id.size(); i++) { + logits_id[i].first *= sum; + } + } + } + + //printf("\n"); + //for (int i = 0; i < (int)logits_id.size(); i++) { + // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first); + //} + //exit(0); + + // sample from the obtained distribution + std::vector probs; + probs.reserve(logits_id.size()); + + for (int i = 0; i < (int) logits_id.size(); i++) { + probs.push_back(logits_id[i].first); + } + + std::discrete_distribution<> dist(probs.begin(), probs.end()); + int idx = dist(rng); + + return logits_id[idx].second; +} + +// default hparams (GPT-2 117M) +struct gpt2_hparams { + int32_t n_vocab = 50257; + int32_t n_ctx = 1024; + int32_t n_embd = 768; + int32_t n_head = 12; + int32_t n_layer = 12; + int32_t f16 = 1; +}; + +struct gpt2_layer { + // normalization + struct ggml_tensor * ln_1_g; + struct ggml_tensor * ln_1_b; + + struct ggml_tensor * ln_2_g; + struct ggml_tensor * ln_2_b; + + // attention + struct ggml_tensor * c_attn_attn_w; + struct ggml_tensor * c_attn_attn_b; + + struct ggml_tensor * c_attn_proj_w; + struct ggml_tensor * c_attn_proj_b; + + // mlp + struct ggml_tensor * c_mlp_fc_w; + struct ggml_tensor * c_mlp_fc_b; + + struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency + struct ggml_tensor * c_mlp_proj_b; +}; + +struct gpt2_model { + gpt2_hparams hparams; + + // normalization + struct ggml_tensor * ln_f_g; + struct ggml_tensor * ln_f_b; + + struct ggml_tensor * wte; // position embedding + struct ggml_tensor * wpe; // token embedding + + std::vector layers; + + // key + value memory + struct ggml_tensor * memory_k; + struct ggml_tensor * memory_v; + + // + struct ggml_context * ctx; + std::map tensors; +}; + +// load the model's weights from a file +bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) { + printf("%s: loading model from '%s'\n", __func__, fname.c_str()); + + auto fin = std::ifstream(fname, std::ios::binary); + if (!fin) { + fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); + return false; + } + + // verify magic + { + uint32_t magic; + fin.read((char *) &magic, sizeof(magic)); + if (magic != 0x67676d6c) { + fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); + return false; + } + } + + // load hparams + { + auto & hparams = model.hparams; + + fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); + fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); + fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); + fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); + fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); + fin.read((char *) &hparams.f16, sizeof(hparams.f16)); + + printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); + printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); + printf("%s: n_embd = %d\n", __func__, hparams.n_embd); + printf("%s: n_head = %d\n", __func__, hparams.n_head); + printf("%s: n_layer = %d\n", __func__, hparams.n_layer); + printf("%s: f16 = %d\n", __func__, hparams.f16); + } + + // load vocab + { + int32_t n_vocab = 0; + fin.read((char *) &n_vocab, sizeof(n_vocab)); + + if (n_vocab != model.hparams.n_vocab) { + fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", + __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); + return false; + } + + std::string word; + for (int i = 0; i < n_vocab; i++) { + uint32_t len; + fin.read((char *) &len, sizeof(len)); + + word.resize(len); + fin.read((char *) word.data(), len); + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + } + + // for the big tensors, we have the option to store the data in 16-bit floats + // in order to save memory and also to speed up the computation + const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; + + auto & ctx = model.ctx; + + size_t ctx_size = 0; + + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + + ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g + ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b + + ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte + ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe + + ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g + ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b + + ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g + ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b + + ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w + ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b + + ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w + ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b + + ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w + ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b + + ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w + ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b + + ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k + ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v + + ctx_size += (6 + 12*n_layer)*256; // object overhead + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + } + + // create the ggml context + { + struct ggml_init_params params = { + .mem_size = ctx_size, + .mem_buffer = NULL, + }; + + model.ctx = ggml_init(params); + if (!model.ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + + // prepare memory for the weights + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + + model.layers.resize(n_layer); + + model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); + model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); + + // map by name + model.tensors["model/ln_f/g"] = model.ln_f_g; + model.tensors["model/ln_f/b"] = model.ln_f_b; + + model.tensors["model/wte"] = model.wte; + model.tensors["model/wpe"] = model.wpe; + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + + layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd); + layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); + + layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); + layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); + layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); + + layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); + layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + // map by name + model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; + model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; + + model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; + model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; + + model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; + model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; + + model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; + model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; + + model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; + model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; + + model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans; + model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; + } + } + + // key + value memory + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + + const int n_mem = n_layer*n_ctx; + const int n_elements = n_embd*n_mem; + + model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); + + const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); + + printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); + } + + // load weights + { + size_t total_size = 0; + + while (true) { + int32_t n_dims; + int32_t length; + int32_t ftype; + + fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); + fin.read(reinterpret_cast(&length), sizeof(length)); + fin.read(reinterpret_cast(&ftype), sizeof(ftype)); + + if (fin.eof()) { + break; + } + + int32_t nelements = 1; + int32_t ne[2] = { 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + nelements *= ne[i]; + } + + std::string name(length, 0); + fin.read(&name[0], length); + + if (model.tensors.find(name.data()) == model.tensors.end()) { + fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); + return false; + } + + auto tensor = model.tensors[name.data()]; + if (ggml_nelements(tensor) != nelements) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); + return false; + } + + if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", + __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); + return false; + } + + const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); + + if (nelements*bpe != ggml_nbytes(tensor)) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); + return false; + } + + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + + //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); + total_size += ggml_nbytes(tensor); + } + + printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); + } + + fin.close(); + + return true; +} + +// evaluate the transformer +// +// - model: the model +// - n_threads: number of threads to use +// - n_past: the context size so far +// - embd_inp: the embeddings of the tokens in the context +// - embd_w: the predicted probabilities of the next token +// +bool gpt2_eval( + const gpt2_model & model, + const int n_threads, + const int n_past, + const std::vector & embd_inp, + std::vector & embd_w, + size_t & mem_per_token) { + const int N = embd_inp.size(); + + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_head = hparams.n_head; + const int n_vocab = hparams.n_vocab; + + static size_t buf_size = 5640ull*1024*1024; + static void * buf = malloc(buf_size); + + if (mem_per_token > 0 && mem_per_token*N > buf_size) { + const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead + printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); + + // reallocate + buf_size = buf_size_new; + buf = realloc(buf, buf_size); + if (buf == nullptr) { + fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); + return false; + } + } + + struct ggml_init_params params = { + .mem_size = buf_size, + .mem_buffer = buf, + }; + + struct ggml_context * ctx0 = ggml_init(params); + struct ggml_cgraph gf = { .n_threads = n_threads }; + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); + + struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + for (int i = 0; i < N; ++i) { + ((int32_t *) position->data)[i] = n_past + i; + } + + // wte + wpe + struct ggml_tensor * inpL = + ggml_add(ctx0, + ggml_get_rows(ctx0, model.wte, embd), + ggml_get_rows(ctx0, model.wpe, position)); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * cur; + + // norm + { + // [ 768, N] + cur = ggml_norm(ctx0, inpL); + + // cur = ln_1_g*cur + ln_1_b + // [ 768, N] + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), + cur), + ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); + } + + // attn + // [2304, 768] - model.layers[il].c_attn_attn_w + // [2304, 1] - model.layers[il].c_attn_attn_b + // [ 768, N] - cur (in) + // [2304, N] - cur (out) + // + // cur = attn_w*cur + attn_b + // [2304, N] + { + cur = ggml_mul_mat(ctx0, + ggml_transpose(ctx0, model.layers[il].c_attn_attn_w), + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), + cur); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); + struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); + struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); + + // store key and value to memory + if (N >= 1) { + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); + } + + // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) + // [64, N, 12] + struct ggml_tensor * Q = + ggml_permute(ctx0, + ggml_cpy(ctx0, + Qcur, + ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), + 0, 2, 1, 3); + + // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) + // [64, n_past + N, 12] + struct ggml_tensor * K = + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), + n_embd/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // GG: flash attention + //struct ggml_tensor * V = + // ggml_cpy(ctx0, + // ggml_permute(ctx0, + // ggml_reshape_3d(ctx0, + // ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), + // n_embd/n_head, n_head, n_past + N), + // 1, 2, 0, 3), + // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head)); + + //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); + + // K * Q + // [n_past + N, N, 12] + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + // [n_past + N, N, 12] + struct ggml_tensor * KQ_scaled = + ggml_scale(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) + ); + + // KQ_masked = mask_past(KQ_scaled) + // [n_past + N, N, 12] + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); + + // KQ = soft_max(KQ_masked) + // [n_past + N, N, 12] + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + + // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() + // [n_past + N, 64, 12] + struct ggml_tensor * V_trans = + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), + n_embd/n_head, n_head, n_past + N), + 1, 2, 0, 3); + + // KQV = transpose(V) * KQ_soft_max + // [64, N, 12] + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + // [64, 12, N] + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_embd, N) + // [768, N] + cur = ggml_cpy(ctx0, + KQV_merged, + ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + } + + // projection + // [ 768, 768] - model.layers[il].c_attn_proj_w + // [ 768, 1] - model.layers[il].c_attn_proj_b + // [ 768, N] - cur (in) + // [ 768, N] - cur (out) + // + // cur = proj_w*cur + proj_b + // [768, N] + { + cur = ggml_mul_mat(ctx0, + ggml_transpose(ctx0, model.layers[il].c_attn_proj_w), + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctx0, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctx0, inpFF); + + // cur = ln_2_g*cur + ln_2_b + // [ 768, N] + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.layers[il].ln_2_g, cur), + cur), + ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); + } + + // fully connected + // [3072, 768] - model.layers[il].c_mlp_fc_w + // [3072, 1] - model.layers[il].c_mlp_fc_b + // [ 768, N] - cur (in) + // [3072, N] - cur (out) + // + // cur = fc_w*cur + fc_b + // [3072, N] + cur = ggml_mul_mat(ctx0, + ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w), + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), + cur); + + // GELU activation + // [3072, N] + cur = ggml_gelu(ctx0, cur); + + // projection + // [ 768, 3072] - model.layers[il].c_mlp_proj_w + // [ 768, 1] - model.layers[il].c_mlp_proj_b + // [3072, N] - cur (in) + // [ 768, N] - cur (out) + // + // cur = proj_w*cur + proj_b + // [768, N] + cur = ggml_mul_mat(ctx0, + model.layers[il].c_mlp_proj_w_trans, + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), + cur); + } + + // input for next layer + inpL = ggml_add(ctx0, cur, inpFF); + } + + // norm + { + // [ 768, N] + inpL = ggml_norm(ctx0, inpL); + + // inpL = ln_f_g*inpL + ln_f_b + // [ 768, N] + inpL = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.ln_f_g, inpL), + inpL), + ggml_repeat(ctx0, model.ln_f_b, inpL)); + } + + // inpL = WTE * inpL + // [ 768, 50257] - model.wte + // [ 768, N] - inpL + inpL = ggml_mul_mat(ctx0, model.wte, inpL); + + // logits -> probs + inpL = ggml_soft_max(ctx0, inpL); + + // run the computation + ggml_build_forward_expand(&gf, inpL); + ggml_graph_compute (ctx0, &gf); + + //if (n_past%100 == 0) { + // ggml_graph_print (&gf); + // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); + //} + + //embd_w.resize(n_vocab*N); + //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); + + // return result for just the last token + embd_w.resize(n_vocab); + memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); + + if (mem_per_token == 0) { + mem_per_token = ggml_used_mem(ctx0)/N; + } + //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); + + ggml_free(ctx0); + + return true; +} + +/////////////////////////////// GPT-2 END //////////////////////////////// + +constexpr int N_THREAD = 8; + +struct gpt2_context { + std::string prompt_base = R"(Hello, how are you? +I'm fine, thanks. How are you? +Thanks, I'm fine too. What are you doing? +I'm just sitting here. +It's a lovely day, isn't it? +Yes, it is. I love the weather this time of year. +I wish it would rain a little bit. +Me too. +)"; + + std::mt19937 rng; + + gpt_vocab vocab; + gpt2_model model; + + int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency()); + + // sampling parameters + int32_t top_k = 20; + float top_p = 0.98f; + float temp = 1.0f; +}; + +struct gpt2_context * gpt2_init(const char * path_model) { + gpt2_context * ctx = new gpt2_context; + + ctx->rng = std::mt19937(time(NULL)); + + // load the model + { + const int64_t t_start_us = ggml_time_us(); + + if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin"); + return nullptr; + } + + const int64_t t_load_us = ggml_time_us() - t_start_us; + + printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000)); + } + + return ctx; +} + +void gpt2_free(struct gpt2_context * ctx) { + delete ctx; +} + +const char * gpt2_get_prompt(struct gpt2_context * ctx) { + return ctx->prompt_base.c_str(); +} + +void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) { + ctx->prompt_base = prompt; +} + +std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text) { + return ::gpt_tokenize(ctx->vocab, text); +} + +std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) { + int n_past = 0; + + std::vector embd_w; + + // tokenize the prompt + std::vector embd_inp = ::gpt2_tokenize(ctx, text); + + int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size()); + + std::vector embd = embd_inp; + + size_t mem_per_token = 3000000; + + std::string result; + + for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) { + // predict + if (embd.size() > 0) { + if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) { + printf("gpt-2: failed to generate text\n"); + return ""; + } + } + + n_past += embd.size(); + embd.clear(); + + { + // sample next token + const int top_k = ctx->top_k; + const float top_p = ctx->top_p; + const float temp = ctx->temp; + + const int n_vocab = ctx->model.hparams.n_vocab; + + const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng); + + // add it to the context + embd.push_back(id); + } + + result += ctx->vocab.id_to_token[embd[0]]; + + // end of text token + if (embd.back() == 50256 || + ctx->vocab.id_to_token[embd.back()] == "." || + ctx->vocab.id_to_token[embd.back()] == "!" || + ctx->vocab.id_to_token[embd.back()] == "?") { + break; + } + } + + return result; +} diff --git a/examples/talk/gpt-2.h b/examples/talk/gpt-2.h new file mode 100644 index 00000000000..a78a9d186de --- /dev/null +++ b/examples/talk/gpt-2.h @@ -0,0 +1,27 @@ +#pragma once + +// TODO: Change to C-style API and move to ./examples for easy reuse. + +#include +#include +#include + +struct gpt_vocab { + using id = int32_t; + using token = std::string; + + std::map token_to_id; + std::map id_to_token; +}; + +struct gpt2_context; + +struct gpt2_context * gpt2_init(const char * path_model); +void gpt2_free(struct gpt2_context * ctx); + +const char * gpt2_get_prompt(struct gpt2_context * ctx); +void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt); + +std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text); + +std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens); diff --git a/examples/talk/speak.sh b/examples/talk/speak.sh new file mode 100755 index 00000000000..1d22709763a --- /dev/null +++ b/examples/talk/speak.sh @@ -0,0 +1,17 @@ +#!/bin/bash + +# Usage: +# speak.sh + +# espeak +# Mac OS: brew install espeak +# Linux: apt-get install espeak +# +espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2" + +# Eleven Labs +# +#wd=$(dirname $0) +#script=$wd/eleven-labs.py +#python3 $script $1 "$2" +#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 diff --git a/examples/talk/talk.cpp b/examples/talk/talk.cpp new file mode 100644 index 00000000000..2b0b2e99fc3 --- /dev/null +++ b/examples/talk/talk.cpp @@ -0,0 +1,733 @@ +// Talk with AI +// + +#include "whisper.h" +#include "gpt-2.h" + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// command-line parameters +struct whisper_params { + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); + int32_t voice_ms = 10000; + int32_t capture_id = -1; + int32_t max_tokens = 32; + int32_t audio_ctx = 0; + + float vad_thold = 0.6f; + float freq_thold = 100.0f; + + bool speed_up = false; + bool translate = false; + bool print_special = false; + bool print_energy = false; + bool no_timestamps = true; + + std::string person = "Santa"; + std::string language = "en"; + std::string model_wsp = "models/ggml-base.en.bin"; + std::string model_gpt = "models/ggml-gpt-2-117M.bin"; + std::string speak = "./examples/talk/speak.sh"; + std::string fname_out = ""; +}; + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params); + +bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { + for (int i = 1; i < argc; i++) { + std::string arg = argv[i]; + + if (arg == "-h" || arg == "--help") { + whisper_print_usage(argc, argv, params); + exit(0); + } + else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } + else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); } + else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } + else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } + else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } + else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } + else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } + else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } + else if (arg == "-tr" || arg == "--translate") { params.translate = true; } + else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } + else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } + else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; } + else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } + else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; } + else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; } + else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; } + else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } + else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); + } + } + + return true; +} + +void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { + fprintf(stderr, "\n"); + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help [default] show this help message and exit\n"); + fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); + fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms); + fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); + fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); + fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); + fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); + fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); + fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); + fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); + fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); + fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); + fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str()); + fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); + fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str()); + fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str()); + fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str()); + fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); + fprintf(stderr, "\n"); +} + +// +// SDL Audio capture +// + +class audio_async { +public: + audio_async(int len_ms); + ~audio_async(); + + bool init(int capture_id, int sample_rate); + + // start capturing audio via the provided SDL callback + // keep last len_ms seconds of audio in a circular buffer + bool resume(); + bool pause(); + bool clear(); + + // callback to be called by SDL + void callback(uint8_t * stream, int len); + + // get audio data from the circular buffer + void get(int ms, std::vector & audio); + +private: + SDL_AudioDeviceID m_dev_id_in = 0; + + int m_len_ms = 0; + int m_sample_rate = 0; + + bool m_running = false; + std::mutex m_mutex; + + std::vector m_audio; + std::vector m_audio_new; + size_t m_audio_pos = 0; + size_t m_audio_len = 0; +}; + +audio_async::audio_async(int len_ms) { + m_len_ms = len_ms; +} + +audio_async::~audio_async() { + if (m_dev_id_in) { + SDL_CloseAudioDevice(m_dev_id_in); + } +} + +bool audio_async::init(int capture_id, int sample_rate) { + SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); + + if (SDL_Init(SDL_INIT_AUDIO) < 0) { + SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); + return false; + } + + SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); + + { + int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); + fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices); + for (int i = 0; i < nDevices; i++) { + fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); + } + } + + SDL_AudioSpec capture_spec_requested; + SDL_AudioSpec capture_spec_obtained; + + SDL_zero(capture_spec_requested); + SDL_zero(capture_spec_obtained); + + capture_spec_requested.freq = sample_rate; + capture_spec_requested.format = AUDIO_F32; + capture_spec_requested.channels = 1; + capture_spec_requested.samples = 1024; + capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) { + audio_async * audio = (audio_async *) userdata; + audio->callback(stream, len); + }; + capture_spec_requested.userdata = this; + + if (capture_id >= 0) { + fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); + m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); + } else { + fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__); + m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); + } + + if (!m_dev_id_in) { + fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); + m_dev_id_in = 0; + + return false; + } else { + fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in); + fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); + fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, + capture_spec_requested.format); + fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, + capture_spec_requested.channels); + fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); + fprintf(stderr, "\n"); + } + + m_sample_rate = capture_spec_obtained.freq; + + m_audio.resize((m_sample_rate*m_len_ms)/1000); + + return true; +} + +bool audio_async::resume() { + if (!m_dev_id_in) { + fprintf(stderr, "%s: no audio device to resume!\n", __func__); + return false; + } + + if (m_running) { + fprintf(stderr, "%s: already running!\n", __func__); + return false; + } + + SDL_PauseAudioDevice(m_dev_id_in, 0); + + m_running = true; + + return true; +} + +bool audio_async::pause() { + if (!m_dev_id_in) { + fprintf(stderr, "%s: no audio device to pause!\n", __func__); + return false; + } + + if (!m_running) { + fprintf(stderr, "%s: already paused!\n", __func__); + return false; + } + + SDL_PauseAudioDevice(m_dev_id_in, 1); + + m_running = false; + + return true; +} + +bool audio_async::clear() { + if (!m_dev_id_in) { + fprintf(stderr, "%s: no audio device to clear!\n", __func__); + return false; + } + + if (!m_running) { + fprintf(stderr, "%s: not running!\n", __func__); + return false; + } + + { + std::lock_guard lock(m_mutex); + + m_audio_pos = 0; + m_audio_len = 0; + } + + return true; +} + +// callback to be called by SDL +void audio_async::callback(uint8_t * stream, int len) { + if (!m_running) { + return; + } + + const size_t n_samples = len / sizeof(float); + + m_audio_new.resize(n_samples); + memcpy(m_audio_new.data(), stream, n_samples * sizeof(float)); + + //fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len); + + { + std::lock_guard lock(m_mutex); + + if (m_audio_pos + n_samples > m_audio.size()) { + const size_t n0 = m_audio.size() - m_audio_pos; + + memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float)); + memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float)); + + m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); + m_audio_len = m_audio.size(); + } else { + memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float)); + + m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); + m_audio_len = std::min(m_audio_len + n_samples, m_audio.size()); + } + } +} + +void audio_async::get(int ms, std::vector & result) { + if (!m_dev_id_in) { + fprintf(stderr, "%s: no audio device to get audio from!\n", __func__); + return; + } + + if (!m_running) { + fprintf(stderr, "%s: not running!\n", __func__); + return; + } + + result.clear(); + + { + std::lock_guard lock(m_mutex); + + if (ms <= 0) { + ms = m_len_ms; + } + + size_t n_samples = (m_sample_rate * ms) / 1000; + if (n_samples > m_audio_len) { + n_samples = m_audio_len; + } + + result.resize(n_samples); + + int s0 = m_audio_pos - n_samples; + if (s0 < 0) { + s0 += m_audio.size(); + } + + if (s0 + n_samples > m_audio.size()) { + const size_t n0 = m_audio.size() - s0; + + memcpy(result.data(), &m_audio[s0], n0 * sizeof(float)); + memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float)); + } else { + memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float)); + } + } +} + +/////////////////////////// + +std::string trim(const std::string & s) { + std::regex e("^\\s+|\\s+$"); + return std::regex_replace(s, e, ""); +} + +std::string replace(const std::string & s, const std::string & from, const std::string & to) { + std::string result = s; + size_t pos = 0; + while ((pos = result.find(from, pos)) != std::string::npos) { + result.replace(pos, from.length(), to); + pos += to.length(); + } + return result; +} + +void high_pass_filter(std::vector & data, float cutoff, float sample_rate) { + const float rc = 1.0f / (2.0f * M_PI * cutoff); + const float dt = 1.0f / sample_rate; + const float alpha = dt / (rc + dt); + + float y = data[0]; + + for (size_t i = 1; i < data.size(); i++) { + y = alpha * (y + data[i] - data[i - 1]); + data[i] = y; + } +} + +bool vad_simple(std::vector & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { + const int n_samples = pcmf32.size(); + const int n_samples_last = (sample_rate * last_ms) / 1000; + + if (n_samples_last >= n_samples) { + // not enough samples - assume no speech + return false; + } + + if (freq_thold > 0.0f) { + high_pass_filter(pcmf32, freq_thold, sample_rate); + } + + float energy_all = 0.0f; + float energy_last = 0.0f; + + for (size_t i = 0; i < n_samples; i++) { + energy_all += fabsf(pcmf32[i]); + + if (i >= n_samples - n_samples_last) { + energy_last += fabsf(pcmf32[i]); + } + } + + energy_all /= n_samples; + energy_last /= n_samples_last; + + if (verbose) { + fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); + } + + if (energy_last > vad_thold*energy_all) { + return false; + } + + return true; +} + +std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector & pcmf32, float & prob, int64_t & t_ms) { + const auto t_start = std::chrono::high_resolution_clock::now(); + + prob = 0.0f; + t_ms = 0; + + whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); + + wparams.print_progress = false; + wparams.print_special = params.print_special; + wparams.print_realtime = false; + wparams.print_timestamps = !params.no_timestamps; + wparams.translate = params.translate; + wparams.no_context = true; + wparams.single_segment = true; + wparams.max_tokens = params.max_tokens; + wparams.language = params.language.c_str(); + wparams.n_threads = params.n_threads; + + wparams.audio_ctx = params.audio_ctx; + wparams.speed_up = params.speed_up; + + if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { + return ""; + } + + int prob_n = 0; + std::string result; + + const int n_segments = whisper_full_n_segments(ctx); + for (int i = 0; i < n_segments; ++i) { + const char * text = whisper_full_get_segment_text(ctx, i); + + result += text; + + const int n_tokens = whisper_full_n_tokens(ctx, i); + for (int j = 0; j < n_tokens; ++j) { + const auto token = whisper_full_get_token_data(ctx, i, j); + + prob += token.p; + ++prob_n; + } + } + + if (prob_n > 0) { + prob /= prob_n; + } + + const auto t_end = std::chrono::high_resolution_clock::now(); + t_ms = std::chrono::duration_cast(t_end - t_start).count(); + + return result; +} + +// compute similarity between two strings using Levenshtein distance +float similarity(const std::string & s0, const std::string & s1) { + const size_t len0 = s0.size() + 1; + const size_t len1 = s1.size() + 1; + + std::vector col(len1, 0); + std::vector prevCol(len1, 0); + + for (size_t i = 0; i < len1; i++) { + prevCol[i] = i; + } + + for (size_t i = 0; i < len0; i++) { + col[0] = i; + for (size_t j = 1; j < len1; j++) { + col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1)); + } + col.swap(prevCol); + } + + const float dist = prevCol[len1 - 1]; + + return 1.0f - (dist / std::max(s0.size(), s1.size())); +} + +// generated with ChatGPT +std::map k_prompts = { + { "Santa", +R"(Kid: Hi Santa! Are you real? +Santa: Of course I am, my dear! Ho ho ho! +Kid: Can you please bring me a new toy for Christmas? +Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents. +Kid: I will, Santa! Thank you! +Santa: You're welcome, little one. Merry Christmas! Ho ho ho! +Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night? +Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child. +Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime? +Santa: I'm sorry, but only good boys and girls get to ride in my sleigh. +)" }, + { "Kid", +R"(Kid: Hi Santa! Are you real? +Santa: Of course I am, my dear! Ho ho ho! +Kid: Can you please bring me a new toy for Christmas? +Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents. +Kid: I will, Santa! Thank you! +Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night? +Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child. +Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime? +)" }, +}; + +int main(int argc, char ** argv) { + whisper_params params; + + if (whisper_params_parse(argc, argv, params) == false) { + return 1; + } + + if (whisper_lang_id(params.language.c_str()) == -1) { + fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); + } + + // whisper init + + struct whisper_context * ctx_wsp = whisper_init(params.model_wsp.c_str()); + + // gpt init + + struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str()); + + // print some info about the processing + { + fprintf(stderr, "\n"); + if (!whisper_is_multilingual(ctx_wsp)) { + if (params.language != "en" || params.translate) { + params.language = "en"; + params.translate = false; + fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); + } + } + fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", + __func__, + params.n_threads, + params.language.c_str(), + params.translate ? "translate" : "transcribe", + params.no_timestamps ? 0 : 1); + + fprintf(stderr, "\n"); + } + + + // init audio + + audio_async audio(30*1000); + if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { + fprintf(stderr, "%s: audio.init() failed!\n", __func__); + return 1; + } + + audio.resume(); + + int n_iter = 0; + + bool is_running = true; + bool force_speak = params.person == "Kid"; + + float prob0 = 0.0f; + float prob = 0.0f; + + std::vector pcmf32_cur; + std::vector pcmf32_prompt; + + if (k_prompts.find(params.person) == k_prompts.end()) { + fprintf(stderr, "%s: unknown person '%s'\n", __func__, params.person.c_str()); + return 1; + } + + gpt2_set_prompt(ctx_gpt, k_prompts.at(params.person).c_str()); + + const std::string person_other = params.person == "Santa" ? "Kid" : "Santa"; + const int voice_id = params.person == "Santa" ? 5 : 2; + + fprintf(stderr, "gpt-2: prompt_base:\n"); + fprintf(stderr, "========================\n\n"); + fprintf(stderr, "%s\n", gpt2_get_prompt(ctx_gpt)); + fprintf(stderr, "========================\n\n"); + + // main loop + while (is_running) { + // handle Ctrl + C + { + SDL_Event event; + while (SDL_PollEvent(&event)) { + switch (event.type) { + case SDL_QUIT: + { + is_running = false; + } break; + default: + break; + } + } + + if (!is_running) { + break; + } + } + + // delay + std::this_thread::sleep_for(std::chrono::milliseconds(100)); + + int64_t t_ms = 0; + + { + audio.get(2000, pcmf32_cur); + + if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) { + fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); + + audio.get(params.voice_ms, pcmf32_cur); + + std::string text_heard = "Hey little one, what do you want for Christmas?"; + if (!force_speak) { + text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms)); + } + + force_speak = false; + + // remove text between brackets using regex + { + std::regex re("\\[.*?\\]"); + text_heard = std::regex_replace(text_heard, re, ""); + } + + // remove text between brackets using regex + { + std::regex re("\\(.*?\\)"); + text_heard = std::regex_replace(text_heard, re, ""); + } + + // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' + text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); + + // take first line + text_heard = text_heard.substr(0, text_heard.find_first_of("\n")); + + // remove leading and trailing whitespace + text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); + text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); + + const std::vector tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str()); + + if (text_heard.empty() || tokens.empty()) { + fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__); + audio.clear(); + + continue; + } + + fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms); + + std::string prompt_base = gpt2_get_prompt(ctx_gpt); + + std::string text_to_speak; + + { + text_heard = person_other + ": " + text_heard; + + text_to_speak = gpt2_gen_text(ctx_gpt, (prompt_base + text_heard + "\n").c_str(), params.max_tokens); + text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); + text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n")); + + // remove first 2 lines of base prompt + if (n_iter > 4) { + { + const size_t pos = prompt_base.find_first_of("\n"); + if (pos != std::string::npos) { + prompt_base = prompt_base.substr(pos + 1); + } + } + { + const size_t pos = prompt_base.find_first_of("\n"); + if (pos != std::string::npos) { + prompt_base = prompt_base.substr(pos + 1); + } + } + } + + prompt_base += text_heard + "\n" + text_to_speak + "\n"; + } + + printf("%s\n", text_to_speak.c_str()); + + //printf("========================\n"); + //printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str()); + //printf("========================\n"); + + gpt2_set_prompt(ctx_gpt, prompt_base.c_str()); + + text_to_speak = ::replace(text_to_speak, params.person + ": ", ""); + system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str()); + + audio.clear(); + + ++n_iter; + } + } + } + + audio.pause(); + + whisper_print_timings(ctx_wsp); + whisper_free(ctx_wsp); + + return 0; +} diff --git a/ggml.c b/ggml.c index 6c38a0324be..7c791299a03 100644 --- a/ggml.c +++ b/ggml.c @@ -4221,7 +4221,7 @@ bool ggml_compute_forward_mul_mat_use_blas( const int ne1 = dst->ne[1]; // TODO: find the optimal values for these - if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) { + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) { //printf("BLAS: %d %d %d\n", ne0, ne1, ne10); return true; } @@ -4298,7 +4298,6 @@ void ggml_compute_forward_mul_mat_f32( #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { - GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(nb10 == sizeof(float)); if (params->ith != 0) return;