Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Estimating the flare location coordinates #95

Open
paolomassa opened this issue Apr 25, 2024 · 0 comments
Open

Estimating the flare location coordinates #95

paolomassa opened this issue Apr 25, 2024 · 0 comments
Labels
enhancement New feature or request
Milestone

Comments

@paolomassa
Copy link
Contributor

paolomassa commented Apr 25, 2024

I think it could be nice to have a little wrapper around the code for estimating the flare location, which is subsequently used to compute the visibilities. Below a simple example, which could be the starting point for implementing an appropriate function

def estimate_flare_location(cpd, time_range, 
                            isc = [3, 20, 22, 16, 14, 32, 21, 26, 4, 24, 8, 28],
                            energy_range = [6,10],
                            imsize = [512, 512]*u.pixel,
                            make_plot = True):
    
    # Create calibrated visibilities
    meta_pixels = create_meta_pixels(cpd, time_range=time_range,
                                     energy_range=energy_range, phase_center=[0, 0] * u.arcsec, 
                                     no_shadowing=True)
    
    vis = create_visibility(meta_pixels)
    
    uu, vv = get_visibility_info_giordano()
    vis.u = uu
    vis.v = vv
    cal_vis = calibrate_visibility(vis)
    
    idx = np.argwhere(np.isin(cal_vis.isc, isc)).ravel()

    stix_vis = Visibility(vis=cal_vis.obsvis[idx], u=cal_vis.u[idx], v=cal_vis.v[idx])
    skeys = stix_vis.__dict__.keys()
    for k, v in cal_vis.__dict__.items():
        if k not in skeys:
            setattr(stix_vis, k, v[idx])
    
    # Compute Back Projection
    rsun_obs = cpd.meta['rsun_arc']*u.arcsec
    pixel = rsun_obs * 2.6 / imsize.value
    
    fd_bp_map = vis_to_map(stix_vis, imsize, pixel_size=pixel)
    fd_bp_map.meta['rsun_obs'] = rsun_obs.value
    
    max_pixel = np.argwhere(fd_bp_map.data == fd_bp_map.data.max()).ravel() *u.pixel
    
    # because WCS axes are reverse order
    stx_flare_loc = fd_bp_map.pixel_to_world(max_pixel[1], max_pixel[0])
    
    if make_plot:
        fig = plt.figure()
        axes = fig.add_subplot(projection=fd_bp_map)
        fd_bp_map.plot(axes=axes)
        fd_bp_map.draw_limb()
        axes.plot_coord(stx_flare_loc, marker='.', markersize=50, fillstyle='none', color='r', markeredgewidth=2)
        axes.set_xlabel('STIX X')
        axes.set_ylabel('STIX Y')
    
    return stx_flare_loc`
    
Maybe part of this function could be implemented in xrayvision as general function for determining flare location from visibilities
@paolomassa paolomassa added the enhancement New feature or request label Apr 25, 2024
@paolomassa paolomassa added this to the v0.2.0 milestone Apr 25, 2024
@paolomassa paolomassa moved this to Todo in stixpy v0.2.0 Apr 25, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
Status: Todo
Development

No branches or pull requests

1 participant