-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformations.py
executable file
·59 lines (54 loc) · 1.73 KB
/
transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
import math
def Standardize(data, dataframe = False):
if dataframe == False:
if sorted(pd.Series(data).unique()) == [0, 1]:
return data
else:
N = len(data)
u = sum(data)/N
standardized_data = []
std = StandardDeviation(data)
for i in data:
standardized_data.append((i-u)/std)
return standardized_data
else:
dfs = []
for i in data.columns:
if sorted(data[i].unique()) == [0, 1]:
dfs.append(pd.DataFrame({i: data[i].values}))
else:
N = data[i].shape[0]
u = data[i].sum()/N
standardized_data = []
std = StandardDeviation(data[i].values)
for k in data[i].values:
standardized_data.append((k-u)/std)
dfs.append(pd.DataFrame({i: standardized_data}))
return pd.concat(dfs, axis=1)
def MinMax(data, dataframe = False):
if dataframe == False:
min_x = min(data)
max_x = max(data)
scaled_data = []
for i in data:
scaled_data.append((i-min_x)/(max_x - min_x))
return scaled_data
else:
dfs = []
for i in data.columns:
min_x = data[i].min()
max_x = data[i].max()
scaled_data = []
for k in data[i].values:
scaled_data.append((k-min_x)/(max_x - min_x))
dfs.append(pd.DataFrame({i: scaled_data}))
return pd.concat(dfs, axis=1)
def StandardDeviation(data):
N = len(data)
u = sum(data)/N
sm = 0
for i in data:
sm += (i - u) **2
div = sm/(N-1)
return math.sqrt(div)