-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbsTree.py
105 lines (99 loc) · 3.09 KB
/
bsTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# https://www.geeksforgeeks.org/binary-search-tree-set-2-delete/
# A Binary Tree Node
# COPIED
class Node:
# Constructor to create a new node
def __init__(self, key):
self.key = key
self.left = None
self.right = None
# A utility function to do inorder traversal of BST
def inorder(root):
if root is not None:
inorder(root.left)
print(root.key)
inorder(root.right)
# A utility function to insert a new node with given key in BST
def insert( node, key):
# If the tree is empty, return a new node
if node is None:
return Node(key)
# Otherwise recur down the tree
if key < node.key:
node.left = insert(node.left, key)
else:
node.right = insert(node.right, key)
# return the (unchanged) node pointer
return node
# Given a non-empty binary search tree, return the node
# with minum key value found in that tree. Note that the
# entire tree does not need to be searched
def minValueNode( node):
current = node
# loop down to find the leftmost leaf
while(current.left is not None):
current = current.left
return current
# Given a binary search tree and a key, this function
# delete the key and returns the new root
def deleteNode(root, key):
# Base Case
if root is None:
return root
# If the key to be deleted is smaller than the root's
# key then it lies in left subtree
if key < root.key:
root.left = deleteNode(root.left, key)
# If the kye to be delete is greater than the root's key
# then it lies in right subtree
elif(key > root.key):
root.right = deleteNode(root.right, key)
# If key is same as root's key, then this is the node
# to be deleted
else:
# Node with only one child or no child
if root.left is None :
temp = root.right
root = None
return temp
elif root.right is None :
temp = root.left
root = None
return temp
# Node with two children: Get the inorder successor
# (smallest in the right subtree)
temp = minValueNode(root.right)
# Copy the inorder successor's content to this node
root.key = temp.key
# Delete the inorder successor
root.right = deleteNode(root.right , temp.key)
return root
# Driver program to test above functions
""" Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 """
root = None
root = insert(root, 50)
root = insert(root, 30)
root = insert(root, 20)
root = insert(root, 40)
root = insert(root, 70)
root = insert(root, 60)
root = insert(root, 80)
print ("Inorder traversal of the given tree")
inorder(root)
print("\nDelete 20")
root = deleteNode(root, 20)
print("Inorder traversal of the modified tree")
inorder(root)
print("\nDelete 30")
root = deleteNode(root, 30)
print("Inorder traversal of the modified tree")
inorder(root)
print("\nDelete 50")
root = deleteNode(root, 50)
print("Inorder traversal of the modified tree")
inorder(root)