-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
311 lines (258 loc) · 10.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import cv2 as cv
import numpy as np
import pyttsx3
import face_recognition
import os
from datetime import datetime
import time
import streamlit as st
import speech_recognition as sr
import google.generativeai as genai
info=[]
# Create a recognizer object
genai.configure(api_key="AIzaSyANdqhVp9WBc0JifgCH320XU_5vPdbCAVU")
recognizer = sr.Recognizer()
# Function to recognize speech
def gemini_response(prompt,question):
model=genai.GenerativeModel("gemini-pro")
response=model.generate_content([prompt,question])
return response.text
def rate(r,voice):
voice.setProperty("rate",r)
def change(voice):
voices=voice.getProperty("voices")
voice.setProperty("voice",voices[2].id)
def speak(text,voice):
voice.say(text)
voice.runAndWait()
voice.stop()
# Distance constants
KNOWN_DISTANCE = 55
PERSON_WIDTH = 17
MOBILE_WIDTH = 3.0
# Object detector constant
CONFIDENCE_THRESHOLD = 0.4
NMS_THRESHOLD = 0.3
# colors for object detected
COLORS = [(255,0,0),(255,0,255),(0, 255, 255), (255, 255, 0), (0, 255, 0), (255, 0, 0)]
GREEN =(0,255,0)
BLACK =(0,0,0)
# defining fonts
FONTS = cv.FONT_HERSHEY_COMPLEX
# getting class names from classes.txt file
class_names = []
with open("classes.txt", "r") as f:
class_names = [cname.strip() for cname in f.readlines()]
# setting up opencv net
yoloNet = cv.dnn.readNet('yolov4-tiny.weights', 'yolov4-tiny.cfg')
model = cv.dnn_DetectionModel(yoloNet)
model.setInputParams(size=(416, 416), scale=1/255, swapRB=True)
# object detector funciton /method
def object_detector(image):
classes, scores, boxes = model.detect(image, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
# creating empty list to add objects data
data_list =[]
for (classid, score, box) in zip(classes, scores, boxes):
print(classid)
# define color of each, object based on its class id
color= COLORS[int(classid) % len(COLORS)]
label = "%s : %f" % (class_names[classid], score)
# label = "%s : %f" % ("sudha", score)
# draw rectangle on and label on object
cv.rectangle(image, box, color, 2)
cv.putText(image, label, (box[0], box[1]-14), FONTS, 0.5, color, 2)
# getting the data
# 1: class name 2: object width in pixels, 3: position where have to draw text(distance)
if classid ==0: # person class id
data_list.append([class_names[classid], box[2], (box[0], box[1]-2)])
elif classid ==67:
data_list.append([class_names[classid], box[2], (box[0], box[1]-2)])
# if you want inclulde more classes then you have to simply add more [elif] statements here
# returning list containing the object data.
return data_list
def focal_length_finder (measured_distance, real_width, width_in_rf):
focal_length = (width_in_rf * measured_distance) / real_width
return focal_length
# distance finder function
def distance_finder(focal_length, real_object_width, width_in_frmae):
distance = (real_object_width * focal_length) / width_in_frmae
return distance
# reading the reference image from dir
ref_person = cv.imread('ReferenceImages/image14.png')
ref_mobile = cv.imread('ReferenceImages/image4.png')
mobile_data = object_detector(ref_mobile)
mobile_width_in_rf = mobile_data[1][1]
person_data = object_detector(ref_person)
person_width_in_rf = person_data[0][1]
print(f"Person width in pixels : {person_width_in_rf} mobile width in pixel: {mobile_width_in_rf}")
# finding focal length
focal_person = focal_length_finder(KNOWN_DISTANCE, PERSON_WIDTH, person_width_in_rf)
focal_mobile = focal_length_finder(KNOWN_DISTANCE, MOBILE_WIDTH, mobile_width_in_rf)
#face recognition
path = "Known_faces"
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curImg = cv.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
encodeListKnown =[]
for img in images:
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeListKnown.append(encode)
print('Encoding Complete')
previous_time=0.0
st.title("Object Detection and Face Recognition App")
st.sidebar.header("Settings")
threshold=st.sidebar.slider("Confidence Threshold", 0.0, 1.0, 0.4, key="confidence_threshold")
# st.sidebar.slider("NMS Threshold", 0.0, 1.0, 0.3, key="nms_threshold")
image_placeholder = st.empty()
# stop=st.button("STOP")
start= st.checkbox("Start Detection",key="test")
if(start):
cap = cv.VideoCapture(0)
while start:
info.clear()
# if(stop):
# break
ret, frame = cap.read()
#face recognition
if ret:
imgS = cv.resize(frame, (0, 0), None, 0.25, 0.25)
imgS = cv.cvtColor(imgS, cv.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
name=None
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
# print(name)
#distance
current_time=time.time()
if name in classNames:
if current_time-previous_time>60:
previous_time=current_time
voice=pyttsx3.init()
change(voice)
rate(190,voice)
speak(f'{name} is here',voice)
# voice.runAndWait()
else:
distance=0
data = object_detector(frame)
# print("data:",data)
for d in data:
distance="unknown"
if d[0] =='person':
distance = distance_finder(focal_person, PERSON_WIDTH, d[1])
x, y = d[2]
elif d[0] =='cell phone':
distance = distance_finder (focal_mobile, MOBILE_WIDTH, d[1])
x, y = d[2]
info.append("{} is {} feets away from you".format(d[0],distance))
cv.rectangle(frame, (x, y-3), (x+150, y+23),BLACK,-1 )
cv.putText(frame, f'Dis: {round(distance,2)} inch', (x+5,y+13), FONTS, 0.48, GREEN, 2)
# print("distance:",distance)
if(distance<40 and distance!=0):
voice=pyttsx3.init()
change(voice)
rate(225,voice)
speak('danger',voice)
# speak('danger',voice)
# speak('danger',voice)
# voice.runAndWait()
elif(distance<70 and distance!=0):
voice=pyttsx3.init()
change(voice)
rate(150,voice)
speak('danger',voice)
# voice.runAndWait()
if cv.waitKey(1) & 0xFF == ord('s'):
break
cv.imshow('frame',frame)
# st.image(frame, channels="BGR", use_column_width=True)
image_placeholder.image(frame, channels="BGR", use_column_width=True)
if(info):
print(info)
else:
pass
cap.release()
cv.destroyAllWindows()
# if(stop):
# print("stoping the camera")
# cap.release()
# cv.destroyAllWindows()
def get_img_info():
info.clear()
cap = cv.VideoCapture(0)
ret, frame = cap.read()
#face recognition
if ret:
imgS = cv.resize(frame, (0, 0), None, 0.25, 0.25)
imgS = cv.cvtColor(imgS, cv.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
name=None
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
# print(name)
#distance
distance=0
data = object_detector(frame)
# print("data:",data)
for d in data:
distance="unknown"
if d[0] =='person':
distance = distance_finder(focal_person, PERSON_WIDTH, d[1])
x, y = d[2]
elif d[0] =='cell phone':
distance = distance_finder (focal_mobile, MOBILE_WIDTH, d[1])
x, y = d[2]
info.append("{} is {} feets away from you".format(d[0],int(distance)))
cv.rectangle(frame, (x, y-3), (x+150, y+23),BLACK,-1 )
cv.putText(frame, f'Dis: {round(distance,2)} inch', (x+5,y+13), FONTS, 0.48, GREEN, 2)
print(info)
else:
pass
cap.release()
# cv.destroyAllWindows()
return info
# if(st.button("get info")):
# res=get_img_info()
# print(res)
# st.subheader(res)
def recognize_speech():
with sr.Microphone() as source:
print("Say something...")
recognizer.adjust_for_ambient_noise(source, duration=1) # Adjust for ambient noise
audio = recognizer.listen(source, timeout=5) # Listen for up to 5 seconds
try:
print("Recognizing...")
text = recognizer.recognize_google(audio) # Use Google Web Speech API for recognition
print("You said:", text)
img_info=get_img_info()
res=gemini_response("You are an assistante for helping the visually blind people, the sentences said by them and the objects around them will be give to you with their distance from them, your task is to response to generate a single line statament which includes all the provided informations, those sentence should be accurate, don't give false stataments.","sentence dais by them:{}, surrounding informations : {}".format(text,img_info))
print(res)
voice=pyttsx3.init()
change(voice)
rate(120,voice)
speak(res,voice)
except sr.UnknownValueError:
print("Sorry, could not understand audio.")
except sr.RequestError as e:
print(f"Could not request results from Google Web Speech API; {e}")
# Call the function to recognize speech
listern=st.button("Listern",key="listern")
if(listern):
recognize_speech()