-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpaper_plots.py
164 lines (133 loc) · 5.27 KB
/
paper_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
import os
import re
import vtk
import argparse
import pdb
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
from vtk.util.numpy_support import numpy_to_vtk as n2v
from vtk.util.numpy_support import vtk_to_numpy as v2n
from get_database import Database
from vtk_functions import read_geo, write_geo, get_all_arrays
from simulation_io import get_dict
fsize = 20
plt.rcParams.update({'font.size': fsize})
plt.rcParams.update({'text.usetex': True, 'font.family': 'serif', 'font.serif': 'Computer Modern Roman'})
def plot_area():
db = Database()
f_in = db.get_centerline_path('0003_0001')
f_out = os.path.join('.', 'OSMSC_0003_0001_branch0')
# get centerline
geo = read_geo(f_in).GetOutput()
arrays, _ = get_all_arrays(geo)
# extract branch
br = 0
mask = arrays['BranchId'] == br
# get plot quantities
path = arrays['Path'][mask]
area_slice = arrays['CenterlineSectionArea'][mask]
area_vmtk = arrays['MaximumInscribedSphereRadius'][mask] ** 2 * np.pi
print('factor', area_slice[0] / area_vmtk[0])
# make plot
fig, ax = plt.subplots(dpi=300, figsize=(6, 6))
ax.plot(path, area_slice, 'r-')
ax.plot(path, area_vmtk, 'b-')
ax.legend(['Area from slicing', 'Area from MISR'])
ax.set_xlim(left=0)
ax.set_xticks([0, 2, 4])
ax.set_xticklabels(['Inlet', '2', '4'])
plt.xlabel('Branch path [cm]')
plt.ylabel('Area [cm$^2$]')
plt.grid()
fig.savefig(f_out, bbox_inches='tight')
def plot_model_statistics(db, geometries_paper):
pie = defaultdict(lambda: defaultdict(int))
cats = ['deliverable_category', 'vascular_state', 'treatment', 'image_data_modality', 'paper_reference', 'gender']
names = {'deliverable_category': 'Vascular anatomy',
'vascular_state': 'Vascular state',
'treatment': 'Treatment',
'image_data_modality': 'Imaging',
'paper_reference': 'Literature reference',
'gender': 'Gender'}
# count all categories
for geo in geometries_paper:
bc_def = db.get_bcs(geo)
if bc_def is not None:
pie['has_bc']['yes'] += 1
params = bc_def['params']
for cat in cats:
if cat in params and 'unpublished' not in params[cat]:
if cat == 'paper_reference':
name = params[cat][:-2]
else:
name = params[cat].capitalize()
elif cat in params and params[cat] == 'Unclassified':
name = 'Normal'
else:
if cat == 'paper_reference':
name = 'Unpublished'
else:
name = 'None'
pie[cat][name] += 1
else:
pie['has_bc']['no'] += 1
# make plots
fig, axs = plt.subplots(2, 2, dpi=300, figsize=(25, 15))
selection = ['deliverable_category', 'vascular_state', 'treatment', 'paper_reference']
for cat, ax in zip(selection, axs.ravel()):
labels = np.array([re.sub(r'\([^)]*\)', '', c) for c in pie[cat].keys()])
sizes = np.array(list(pie[cat].values()))
order = np.argsort(sizes)
print('num', np.sum(sizes))
abs_size = lambda p: '{:.0f}'.format(p * np.sum(sizes) / 100)
theme = plt.get_cmap('Reds')
ax.set_prop_cycle("color", [theme(1. * i / len(sizes)) for i in range(len(sizes))])
ax.pie(sizes[order], labels=labels[order], autopct=abs_size)
ax.axis('equal')
ax.set_title(names[cat], fontsize=40, pad=20)
f_out = os.path.join(db.get_statistics_dir(), 'repo_statistics')#.pgf
fig.savefig(f_out, bbox_inches='tight')
plt.close(fig)
def plot_collage(db, geos):
nx = 10
ny = 8
assert nx * ny >= len(geos), 'choose larger image grid: ' + str(len(geos))
fig , ax = plt.subplots(nx, ny, figsize=(ny * 2, nx * 2.5), dpi=100)
ig = 0
for i in range(nx):
for j in range(ny):
ax[i, j].axis('off')
if ig >= len(geos):
continue
geo = geos[ig]
impath = db.get_png(geo)
if not os.path.exists(impath):
continue
im = plt.imread(impath)
ax[i, j].imshow(im)
ax[i, j].set_title(geo.replace('_', '\_'), fontsize=18)
ig += 1
f_out = os.path.join(db.get_statistics_dir(), 'repo_models')#.pgf
#fig.tight_layout(pad=3.0)
fig.savefig(f_out, bbox_inches='tight')
plt.close(fig)
def main():
db = Database('1spb_length_stenosis')
# geometries_paper = db.get_geometries_select('paper')
# only geometries where a 0d AND a 3d_rerun solution exisis
geometries_paper = []
for geo in sorted(list(get_dict(db.get_log_file_0d()).keys())):
if os.path.exists('/home/pfaller/work/osmsc/studies/ini_1d_quad/3d_flow/' + geo + '.vtp'):
geometries_paper += [geo]
else:
if os.path.exists('/home/pfaller/work/osmsc/studies/ini_zero/3d_flow/' + geo + '.vtp'):
geometries_paper += [geo]
print(geometries_paper)
plot_collage(db, geometries_paper)
plot_model_statistics(db, geometries_paper)
plot_area()
if __name__ == '__main__':
descr = 'Make plots for 3D-1D-0D paper'
main()