-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_sv_project.py
executable file
·908 lines (741 loc) · 36.2 KB
/
get_sv_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
#!/usr/bin/env python
import pdb
import os
import shutil
import glob
import matplotlib.cm as cm
from collections import OrderedDict, defaultdict
import numpy as np
import scipy.interpolate
from get_database import input_args, Database, SVProject, SimVascular, Post
from common import coronary_sv_to_oned, get_dict
from get_sv_meshes import get_meshes
class Project:
def __init__(self, db, geo, mode):
self.db = db
self.geo = geo
self.mode = mode
self.opt = self.get_sv_opt()
def create_sv_project(self):
print('Estimated cycles: ' + str(self.opt['n_cycle']))
self.check_files()
self.make_folders()
self.write_inflow('1d')
self.write_inflow('3d')
self.copy_files()
self.write_svproj_file()
self.write_model()
self.write_simulation()
self.write_mesh()
self.write_pre()
self.write_solver()
self.write_bc(os.path.join(self.db.get_solve_dir_3d(self.geo)), False)
self.write_path_segmentation()
def get_sv_opt(self):
# get boundary conditions
bc_def = self.db.get_bcs(self.geo)
if 'steady' in self.mode:
bc_def = rc_to_r(bc_def)
# number of cycles
n_cycle = self.estimate_n_cycle()
# number of time steps
numstep = self.db.get_3d_numstep(self.geo)
# time step
dt = self.db.get_3d_timestep(self.geo)
# time increment
nt_out = self.db.get_3d_increment(self.geo)
# read inflow conditions
time, inflow = self.db.get_inflow_smooth(self.geo)
if self.mode == '':
pass
elif self.mode == 'ini_1d_quad':
n_cycle = 5
elif self.mode == 'steady':
n_cycle = 1
numstep = 100
nt_out = 1
inflow = np.mean(inflow) * np.ones(len(time))
elif self.mode == 'steady0':
n_cycle = 1
inflow = inflow[0] * np.ones(len(time))
elif self.mode == 'irene':
n_cycle = 1
# sample inflow at fine time step
dt_fine = dt# * 1e-3
time_fine = np.arange(0, time[-1] + dt_fine, dt_fine)
inflow_fine = scipy.interpolate.interp1d(time, inflow, fill_value="extrapolate")(time_fine)
# find (first) time where inflow reaches mean flow
f_mean = np.mean(inflow)
t_mean = np.argwhere(np.diff(np.sign(inflow_fine - f_mean))).flatten()[0]
assert np.abs(inflow_fine[t_mean]/f_mean - 1) < 5e-2, 'could not find mean-flow'
# shift inflow to start at mean flow
inflow_fine_shift = np.roll(inflow_fine, -t_mean)
# interpolate back to original time step
inflow = scipy.interpolate.interp1d(time_fine, inflow_fine_shift)(time)
assert np.abs(inflow[0]/f_mean - 1) < 5e-2, 'inflow does not start at mean flow'
p_str = 'time post nt=' + str(numstep-t_mean)
p_str += ' mean inflow f=' + str(f_mean * Post().convert['flow']) + ' [l/]'
p_str += ' at t=' + str(t_mean * dt_fine) + ' s'
print(p_str)
else:
raise ValueError('Unknown mode ' + self.mode)
# number of time steps
n_time = n_cycle * numstep + nt_out
# create inflow string
inflow_str = array_to_sv(np.vstack((time, inflow)).T)
# number of fourier modes
n_t = time.shape[0]
if n_t % 2 == 0:
n_fourier = int(n_t / 2 + 1)
else:
n_fourier = int((n_t + 1) / 2)
n_fourier = np.min([200, n_fourier])
# number of points
n_point = len(time)
# get inflow type
inflow_type = bc_def['bc']['inflow']['type']
if inflow_type == 'womersley':
inflow_type = 'plug'
if inflow_type not in ['parabolic', 'plug', 'womersley']:
raise ValueError('unknown inflow type ' + inflow_type)
# set svsolver options
opt = {'bc': bc_def,
'density': '1.06',
'viscosity': '0.04',
'backflow': '0.2',
'advection': 'Convective',
'inflow': 'inflow.flow',
'inflow_data': np.vstack((time, inflow)).T,
'inflow_str': inflow_str,
'inflow_type': inflow_type,
'fourier_modes': str(n_fourier),
'fourier_period': str(time[-1]),
'fourier_points': str(n_point),
'max_iter_continuity': '400',
'max_iter_momentum': '10',
'max_iter_ns_solver': '10',
'min_iter': '3',
'num_krylov': '300',
'num_solve': '1',
'num_time': str(int(n_time)),
'num_restart': '1',#str(nt_out),
'n_cycle': n_cycle,
'bool_surf_stress': 'True',
'coupling': 'Implicit',
'print_avg_sol': 'True',
'print_err': 'False',
'quad_boundary': '3',
'quad_interior': '2',
'residual_control': 'True',
'residual_criteria': '0.01',
'residual_tolerance': '1.0e12',
'step_construction': '5',
'time_int_rho': '0.5',
'time_int_rule': 'Second Order',
'time_step': str(dt),
'tol_continuity': '0.01',
'tol_momentum': '0.01',
'tol_ns_solver': '0.01',
'svls_type': 'NS',
'mesh_initial': os.path.join('mesh-complete', 'initial.vtu'),
'mesh_vtu': os.path.join('mesh-complete', 'mesh-complete.mesh.vtu'),
'mesh_vtp': os.path.join('mesh-complete', 'mesh-complete.exterior.vtp'),
'mesh_inflow': os.path.join('mesh-complete', 'mesh-surfaces', 'inflow.vtp'),
'mesh_walls': os.path.join('mesh-complete', 'walls_combined.vtp')}
return opt
def estimate_n_cycle(self, n_extra=1, n_default=5):
# get numerical time constants
db = Database('1spb_length')
res_num = get_dict(db.get_convergence_path())
params = db.get_bcs(self.geo)
cat = params['params']['deliverable_category']
# pure resistance
bc_types = np.unique(list(params['bc_type'].values()))
if len(bc_types) == 1 and bc_types[0] == 'resistance':
return 2
# time constant
if self.geo not in res_num:
tau_list = []
for outlet, val in params['bc'].items():
if outlet in params['bc_type'] and params['bc_type'][outlet] == 'rcr':
tau_list += [val['C'] * val['Rd']]
tau = np.max(tau_list)
else:
tau = np.mean(res_num[self.geo]['tau']['pressure'])
# tolerance for asymptotic convergence
tol = 0.01
# number of cardiac cycles required to reach tolerance (+ extra) from zero ICs
n_cycle_zero = int(- np.log(tol) * tau + 0.5) + n_extra
# estimated number of cycles from steady state ICs
n_cycle_mean = int(4 + 2 * (tau + 0.5))
if cat == 'Coronary':
return n_cycle_zero
else:
return np.min([n_cycle_zero, n_cycle_mean])
def write_svproj_file(self):
t = str(self.db.svproj.t)
proj_head = ['<?xml version="1.0" encoding="UTF-8"?>',
'<projectDescription version="1.0">']
proj_end = ['</projectDescription>']
with open(self.db.get_svproj_file(self.geo), 'w+') as f:
# write header
for s in proj_head:
f.write(s + '\n')
# write images/segmentations
for k, s in self.db.svproj.dir.items():
f.write(t + '<' + k + ' folder_name="' + s + '"')
if k == 'images' and self.db.get_img(self.geo) is not None:
img = os.path.basename(self.db.get_img(self.geo))
f.write('>\n')
f.write(
t * 2 + '<image name="' + os.path.splitext(img)[0] + '" in_project="yes" path="' + img + '"/>\n')
f.write(t + '</' + k + '>\n')
# elif k == 'segmentations':
else:
f.write('/>\n')
# write end
for s in proj_end:
f.write(s + '\n')
def write_model(self):
t = str(self.db.svproj.t)
model_head = ['<?xml version="1.0" encoding="UTF-8" ?>',
'<format version="1.0" />',
'<model type="PolyData">',
t + '<timestep id="0">',
t * 2 + '<model_element type="PolyData" num_sampling="0">']
model_end = [t * 3 + '<blend_radii />',
t * 3 + '<blend_param blend_iters="2" sub_blend_iters="3" cstr_smooth_iters="2" lap_smooth_iters="50" '
'subdivision_iters="1" decimation="0.01" />',
t * 2 + '</model_element>',
t + '</timestep>',
'</model>']
# read boundary conditions
bc_def = self.opt['bc']
bc_def['preid']['wall'] = 0
# get cap names
caps = self.db.get_surface_names(self.geo, 'caps')
caps += ['wall']
# sort caps according to face id
ids = np.array([repr(int(float(bc_def['preid'][c] + 1))) for c in caps])
order = np.argsort(ids)
caps = np.array(caps)[order]
ids = ids[order]
# display colors for caps
colors = cm.jet(np.linspace(0, 1, len(caps)))
# write model file
with open(self.db.get_svproj_mdl_file(self.geo), 'w+') as f:
# write header
for s in model_head:
f.write(s + '\n')
# <segmentations>
# <seg name="aorta_final_new" />
# <seg name="btrunk_final" />
# <seg name="carotid_final" />
# <seg name="subclavian_final_new" />
# </segmentations>
# write faces
f.write(t * 3 + '<faces>\n')
for i, c in enumerate(caps):
c_str = t * 4 + '<face id="' + ids[i] + '" name="' + c + '" type='
if c == 'wall':
c_str += '"wall"'
else:
c_str += '"cap"'
for j in range(3):
c_str += ' color' + repr(j + 1) + '="' + repr(colors[i, j]) + '"'
f.write(c_str + ' visible="true" opacity="1" />\n')
f.write(t * 3 + '</faces>\n')
# write end
for s in model_end:
f.write(s + '\n')
def write_path_segmentation(self):
# SimVascular instance
sv = SimVascular()
# get paths
p = OrderedDict()
p['f_path_in'] = self.db.get_path_file(self.geo)
p['f_path_out'] = os.path.join(self.db.get_svproj_dir(self.geo), self.db.svproj.dir['paths'])
seg_dir = self.db.get_seg_dir(self.geo)
segments = glob.glob(os.path.join(seg_dir, '*'))
err_seg = ''
for s in segments:
p['f_seg_in'] = s
p['f_seg_out'] = os.path.join(self.db.get_svproj_dir(self.geo), self.db.svproj.dir['segmentations'])
if '.tcl' in s:
continue
# assemble call string
sv_string = [os.path.join(os.getcwd(), 'sv_get_path_segmentation.py')]
for v in p.values():
sv_string += [v]
err = sv.run_python_legacyio(sv_string)[1]
if err:
err_seg += os.path.basename(s).split('.')[0] + '\n'
# execute SimVascular-Python
return err_seg
def write_mesh(self):
t = str(self.db.svproj.t)
mesh_generic = ['<?xml version="1.0" encoding="UTF-8" ?>',
'<format version="1.0" />',
'<mitk_mesh type="TetGen" model_name="' + self.geo + '">',
t + '<timestep id="0">',
t * 2 + '<mesh type="TetGen">',
t * 3 + '<command_history>',
t * 4 + '<command content="option surface 1" />',
t * 4 + '<command content="option volume 1" />',
t * 4 + '<command content="option UseMMG 1" />',
t * 4 + '<command content="setWalls" />',
# t * 4 + '<command content="option Optimization 3" />',
# t * 4 + '<command content="option QualityRatio 1.4" />',
t * 4 + '<command content="option NoBisect" />',
# t * 4 + '<command content="AllowMultipleRegions 0" />',
t * 4 + '<command content="generateMesh" />',
t * 4 + '<command content="writeMesh" />',
t * 3 + '</command_history>',
t * 2 + '</mesh>',
t + '</timestep>',
'</mitk_mesh>']
fname = os.path.join(self.db.get_svproj_dir(self.geo), self.db.svproj.dir['meshes'], self.geo + '.msh')
# write generic mesh file
with open(fname, 'w+') as f:
for s in mesh_generic:
f.write(s + '\n')
def write_inflow(self, model, n_mode=10, n_sample_real=256):
# read inflow conditions
opt = self.opt
time = opt['inflow_data'][:, 0]
inflow = opt['inflow_data'][:, 1]
if time is None:
raise ValueError('no inflow')
# save inflow file
fpath = self.db.get_sv_flow_path(self.geo, model)
os.makedirs(os.path.dirname(fpath), exist_ok=True)
# reverse flow for svOneDSolver
fmt = '%.10e'
if model == '1d':
np.savetxt(fpath, np.vstack((time, - inflow)).T, fmt=fmt)
else:
np.savetxt(fpath, np.vstack((time, inflow)).T, fmt=fmt)
return len(inflow), time[-1]
def write_pre(self, solver='svsolver'):
"""
Create input file for svpre
"""
# get boundary conditions
bc_def = self.opt['bc']
# read inflow conditions
time, _ = self.db.get_inflow_smooth(self.geo)
# outlet names
outlets = self.db.get_outlet_names(self.geo)
# get solver options
opt = self.opt
with open(self.db.get_svpre_file(self.geo, solver), 'w+') as f:
# enter debug mode
# f.write('verbose true\n')
# write volume mesh
f.write('mesh_and_adjncy_vtu ' + opt['mesh_vtu'] + '\n')
# write surface mesh
fpath_surf = os.path.join('mesh-complete', 'mesh-surfaces')
# write surfaces (sort according to surface ID for readability)
f.write('set_surface_id_vtp ' + opt['mesh_vtp'] + ' 1\n')
f.write('set_surface_id_vtp ' + opt['mesh_inflow'] + ' 2\n')
for k in outlets:
v = bc_def['preid'][k] + 1
if int(v) > 1:
f_surf = os.path.join(fpath_surf, k + '.vtp')
# check if mesh file exists
f_surf_full = os.path.join(self.db.get_solve_dir_3d(self.geo), f_surf)
assert os.path.exists(f_surf_full), 'file ' + f_surf + ' does not exist'
f.write('set_surface_id_vtp ' + f_surf + ' ' + repr(int(v)) + '\n')
f.write('\n')
if solver == 'perigee':
return
# write inlet bc
f.write('prescribed_velocities_vtp ' + opt['mesh_inflow'] + '\n\n')
# generate inflow
f.write('bct_analytical_shape ' + opt['inflow_type'] + '\n')
f.write('bct_period ' + opt['fourier_period'] + '\n')
f.write('bct_point_number ' + opt['fourier_points'] + '\n')
f.write('bct_fourier_mode_number ' + opt['fourier_modes'] + '\n')
# f.write('bct_create ' + opt['mesh_inflow'] + ' ' + self.db.get_sv_flow_path_rel(self.geo, '3d_constant') + '\n')
f.write('bct_create ' + opt['mesh_inflow'] + ' ' + opt['inflow'] + '\n')
f.write('bct_write_dat bct.dat\n')
f.write('bct_write_vtp bct.vtp\n\n')
# write default parameters
f.write('fluid_density ' + opt['density'] + '\n')
f.write('fluid_viscosity ' + opt['viscosity'] + '\n\n')
# reference pressure
for cap in outlets:
bc = bc_def['bc'][cap]
if cap == 'inflow' or cap == 'wall':
continue
if 'Po' in bc and bc_def['bc_type'][cap] == 'resistance':
p0 = str(bc['Po'])
else:
p0 = '0.0'
f.write('pressure_vtp ' + os.path.join(fpath_surf, cap + '.vtp') + ' ' + p0 + '\n')
f.write('\n')
# set previous results as initial condition
f.write('read_pressure_velocity_vtu ' + opt['mesh_initial'] + '\n\n')
# f.write('initial_pressure 0\n')
# f.write('initial_velocity 0.0001 0.0001 0.0001\n\n')
# no slip boundary condition
f.write('noslip_vtp ' + opt['mesh_walls'] + '\n\n')
# request outputs
f.write('write_geombc geombc.dat.1\n')
f.write('write_restart restart.0.1\n')
f.write('write_numstart 0\n\n')
# write start file
fname_start = os.path.join(self.db.get_solve_dir_3d(self.geo), 'numstart.dat')
with open(fname_start, 'w+') as f:
f.write('0')
def write_solver(self):
# get boundary conditions
bc_def = self.opt['bc']
# ordered outlets
outlets = self.db.get_outlet_names(self.geo)
# get solver options
opt = self.opt
with open(self.db.get_solver_file(self.geo), 'w+') as f:
# write default parameters
# todo: get from tcl
f.write('Density: ' + opt['density'] + '\n')
f.write('Viscosity: ' + opt['viscosity'] + '\n\n')
# time step
f.write('Number of Timesteps: ' + opt['num_time'] + '\n')
f.write('Time Step Size: ' + opt['time_step'] + '\n\n')
# output
f.write('Number of Timesteps between Restarts: ' + opt['num_restart'] + '\n')
f.write('Number of Force Surfaces: 1\n')
f.write('Surface ID\'s for Force Calculation: 0\n')
f.write('Force Calculation Method: Velocity Based\n')
f.write('Print Average Solution: ' + opt['print_avg_sol'] + '\n')
f.write('Print Error Indicators: ' + opt['print_err'] + '\n\n')
f.write('Time Varying Boundary Conditions From File: True\n\n')
f.write('Step Construction:')
for i in range(int(opt['step_construction'])):
f.write(' 0 1')
f.write('\n\n')
# collect faces for each boundary condition type
bc_ids = defaultdict(list)
for cap in outlets:
bc_ids[bc_def['bc_type'][cap]] += [int(bc_def['preid'][cap]) + 1]
# boundary conditions
names = {'rcr': 'RCR', 'resistance': 'Resistance', 'coronary': 'COR'}
for t, v in bc_ids.items():
f.write('Number of ' + names[t] + ' Surfaces: ' + str(len(v)) + '\n')
f.write('List of ' + names[t] + ' Surfaces: ' + str(v).replace(',', '')[1:-1] + '\n')
if t == 'rcr' or t == 'coronary':
f.write(names[t] + ' Values From File: True\n\n')
elif t == 'resistance':
f.write('Resistance Values: ')
for cap in self.db.get_outlet_names(self.geo):
if bc_def['bc_type'][cap] == 'resistance':
f.write(str(bc_def['bc'][cap]['R']) + ' ')
f.write('\n\n')
else:
raise ValueError('Boundary condition ' + t + ' unknown')
f.write('Pressure Coupling: ' + opt['coupling'] + '\n')
f.write('Number of Coupled Surfaces: ' + str(len(bc_def['bc']) - 2) + '\n\n')
f.write('Backflow Stabilization Coefficient: ' + opt['backflow'] + '\n')
# nonlinear solver
f.write('Residual Control: ' + opt['residual_control'] + '\n')
f.write('Residual Criteria: ' + opt['residual_criteria'] + '\n')
f.write('Residual Tolerance: ' + opt['residual_tolerance'] + '\n')
f.write('Minimum Required Iterations: ' + opt['min_iter'] + '\n')
# linear solver
f.write('svLS Type: ' + opt['svls_type'] + '\n')
f.write('Number of Krylov Vectors per GMRES Sweep: ' + opt['num_krylov'] + '\n')
f.write('Number of Solves per Left-hand-side Formation: ' + opt['num_solve'] + '\n')
f.write('Tolerance on Momentum Equations: ' + opt['tol_momentum'] + '\n')
f.write('Tolerance on Continuity Equations: ' + opt['tol_continuity'] + '\n')
f.write('Tolerance on svLS NS Solver: ' + opt['tol_ns_solver'] + '\n')
f.write('Maximum Number of Iterations for svLS NS Solver: ' + opt['max_iter_ns_solver'] + '\n')
f.write('Maximum Number of Iterations for svLS Momentum Loop: ' + opt['max_iter_momentum'] + '\n')
f.write('Maximum Number of Iterations for svLS Continuity Loop: ' + opt['max_iter_continuity'] + '\n')
# time integration
f.write('Time Integration Rule: ' + opt['time_int_rule'] + '\n')
f.write('Time Integration Rho Infinity: ' + opt['time_int_rho'] + '\n')
f.write('Flow Advection Form: ' + opt['advection'] + '\n')
f.write('Quadrature Rule on Interior: ' + opt['quad_interior'] + '\n')
f.write('Quadrature Rule on Boundary: ' + opt['quad_boundary'] + '\n')
def write_simulation(self):
# get boundary conditions
bc_def = self.opt['bc']
# get outlet names
outlets = self.db.get_outlet_names(self.geo)
# get solver options
opt = self.opt
# tab
t = str(self.db.svproj.t)
sim_header = ['<?xml version="1.0" encoding="UTF-8" ?>',
'<format version="1.0" />',
'<mitk_job model_name="' + self.geo + '" mesh_name="' + self.geo + '" status="Simulation failed">',
t + '<job>']
basic_props = [['Fluid Density', opt['density']],
['Fluid Viscosity', opt['viscosity']],
['IC File', opt['mesh_initial']],
['Initial Pressure', '0'],
['Initial Velocities', '0.0001 0.0001 0.0001']]
inflow_props = [['Analytic Shape', bc_def['bc']['inflow']['type']],
['BC Type', 'Prescribed Velocities'],
['Flip Normal', 'False'],
['Flow Rate', opt['inflow_str']],
['Fourier Modes', opt['fourier_modes']],
['Original File', 'inflow.flow'],
['Period', opt['fourier_period']],
['Point Number', opt['fourier_points']]]
wall_props = [['Type', 'rigid']]
solver_props = [['Backflow Stabilization Coefficient', opt['backflow']],
['Flow Advection Form', opt['advection']],
['Force Calculation Method', 'Velocity Based'],
['Maximum Number of Iterations for svLS Continuity Loop', opt['max_iter_continuity']],
['Maximum Number of Iterations for svLS Momentum Loop', opt['max_iter_momentum']],
['Maximum Number of Iterations for svLS NS Solver', opt['max_iter_ns_solver']],
['Minimum Required Iterations', opt['min_iter']],
['Number of Krylov Vectors per GMRES Sweep', opt['num_krylov']],
['Number of Solves per Left-hand-side Formation', opt['num_solve']],
['Number of Timesteps', opt['num_time']],
['Number of Timesteps between Restarts', opt['num_restart']],
['Output Surface Stress', opt['bool_surf_stress']],
['Pressure Coupling', opt['coupling']],
['Print Average Solution', opt['print_avg_sol']],
['Print Error Indicators', opt['print_err']],
['Quadrature Rule on Boundary', opt['quad_boundary']],
['Quadrature Rule on Interior', opt['quad_interior']],
['Residual Control', opt['residual_control']],
['Residual Criteria', opt['residual_criteria']],
['Residual Tolerance', opt['residual_tolerance']],
['Step Construction', opt['step_construction']],
['Time Integration Rho Infinity', opt['time_int_rho']],
['Time Integration Rule', opt['time_int_rule']],
['Time Step Size', opt['time_step']],
['Tolerance on Continuity Equations', opt['tol_continuity']],
['Tolerance on Momentum Equations', opt['tol_momentum']],
['Tolerance on svLS NS Solver', opt['tol_ns_solver']],
['svLS Type', opt['svls_type']]]
run_props = [['Number of Processes', '8']]
with open(self.db.get_svproj_sjb_file(self.geo), 'w+') as f:
for h in sim_header:
f.write(h + '\n')
f.write(t * 2 + '<basic_props>\n')
print_props(f, basic_props, t * 3)
f.write(t * 2 + '</basic_props>\n')
# bcs
f.write(t * 2 + '<cap_props>\n')
# outflow
for k in outlets:
f.write(t * 3 + '<cap name="' + k + '">\n')
tp = bc_def['bc_type'][k]
bc = bc_def['bc'][k]
if tp == 'rcr':
rcr_val = ' '.join([str(bc[v]) for v in ['Rp', 'C', 'Rd']])
f.write(t * 4 + '<prop key="BC Type" value="RCR" />\n')
f.write(t * 4 + '<prop key="C Values" value="" />\n')
if 'Po' in bc:
f.write(t * 4 + '<prop key="Pressure" value="' + str(bc['Po']) + '" />\n')
else:
f.write(t * 4 + '<prop key="Pressure" value="0.0" />\n')
f.write(t * 4 + '<prop key="R Values" value="" />\n')
f.write(t * 4 + '<prop key="Values" value="' + rcr_val + '" />\n')
elif tp == 'resistance':
f.write(t * 4 + '<prop key="BC Type" value="Resistance" />\n')
if 'Po' in bc:
f.write(t * 4 + '<prop key="Pressure" value="' + str(bc['Po']) + '" />\n')
else:
f.write(t * 4 + '<prop key="Pressure" value="0.0" />\n')
f.write(t * 4 + '<prop key="Values" value="' + str(bc['R']) + '" />\n')
elif tp == 'coronary':
# convert parameters to SimVascular format
bc_sv = coronary_sv_to_oned(bc)
c_val = ' '.join([str(bc_sv[v]) for v in ['Ca', 'Cc']])
r_val = ' '.join([str(bc_sv[v]) for v in ['Ra1', 'Ra2', 'Rv1']])
p_val = str(bc_sv['P_v'])
a_val = ' '.join([str(bc_sv[v]) for v in ['Ra1', 'Ca', 'Ra2', 'Cc', 'Rv1']])
p_v = bc_def['coronary'][bc['Pim']]
# save ventricular pressure to file
f_out = os.path.join(self.db.get_solve_dir_3d(self.geo), bc['Pim'])
np.savetxt(f_out, p_v)
f.write(t * 4 + '<prop key="BC Type" value="Coronary" />\n')
f.write(t * 4 + '<prop key="C Values" value="' + c_val + '" />\n')
f.write(t * 4 + '<prop key="Original File" value="' + os.path.join(self.geo, bc['Pim']) + '" />\n')
f.write(t * 4 + '<prop key="Pressure" value="' + p_val + '" />\n')
f.write(t * 4 + '<prop key="Pressure Period" value="' + str(p_v[-1, 0]) + '" />\n')
f.write(t * 4 + '<prop key="Pressure Scaling" value="1.0" />\n')
f.write(t * 4 + '<prop key="R Values" value="' + r_val + '" />\n')
f.write(t * 4 + '<prop key="Timed Pressure" value="' + array_to_sv(p_v) + '" />\n')
f.write(t * 4 + '<prop key="Values" value="' + a_val + '" />\n')
else:
raise ValueError('Boundary condition ' + tp + ' unknown')
f.write(t * 3 + '</cap>\n')
# inflow
f.write(t * 3 + '<cap name="inflow">\n')
print_props(f, inflow_props, t * 4)
f.write(t * 3 + '</cap>\n')
f.write(t * 2 + '</cap_props>\n')
# wall
f.write(t * 2 + '<wall_props>\n')
print_props(f, wall_props, t * 3)
f.write(t * 2 + '</wall_props>\n')
# various
f.write(t * 2 + '<var_props />\n')
# solver
f.write(t * 2 + '<solver_props>\n')
print_props(f, solver_props, t * 3)
f.write(t * 2 + '</solver_props>\n')
# run
f.write(t * 2 + '<run_props>\n')
print_props(f, run_props, t * 3)
f.write(t * 2 + '</run_props>\n')
# close
f.write(t + '</job>\n')
f.write('</mitk_job>')
def write_bc(self, fdir, write_face=True, model='3d'):
# get boundary conditions
bc_def = self.opt['bc']
# check if bc-file exists
if not bc_def:
return None, 'boundary conditions do not exist'
# get outlet names
outlets = self.db.get_outlet_names(self.geo)
# names expected by svsolver for different boundary conditions
bc_file_names = {'rcr': 'rcrt.dat', 'resistance': 'resistance.dat', 'coronary': 'cort.dat'}
# keyword to indicate a new boundary condition
keywords = {'rcr': '2', 'coronary': '1001'}
# create bc-files for every bc type
u_bc_types = list(set(bc_def['bc_type'].values()))
files = {}
fnames = []
for t in u_bc_types:
if t in bc_file_names:
fname = os.path.join(fdir, bc_file_names[t])
files[t] = open(fname, 'w+')
fnames += [fname]
# write keyword for new faces in first line
if t == 'rcr' or t == 'coronary':
files[t].write(keywords[t] + '\n')
else:
return None, 'boundary condition not implemented (' + t + ')'
# write boundary conditions
for s in outlets:
bc = bc_def['bc'][s]
t = bc_def['bc_type'][s]
f = files[t]
write_vals = lambda names: f.write('\n'.join([str(bc[v]) for v in names]))
if t == 'rcr':
f.write(keywords[t] + '\n')
if write_face:
f.write(s + '\n')
write_vals(['Rp', 'C', 'Rd'])
if 'Po' in bc and bc['Po'] != 0.0:
p_ref = bc['Po']
else:
p_ref = 0.0
f.write('\n0.0 ' + str(p_ref) + '\n')
f.write('1.0 ' + str(p_ref) + '\n')
elif t == 'resistance':
f.write(s + ' ')
f.write(str(bc['R']) + ' ')
f.write(str(bc['Po']) + '\n')
elif t == 'coronary':
f.write(keywords[t] + '\n')
if model == '1d':
f.write(s + '\n')
write_vals(['q0', 'q1', 'q2', 'p0', 'p1', 'p2', 'b0', 'b1', 'b2', 'dQinidT', 'dPinidT'])
f.write('\n')
# write time and pressure pairs
for m in bc_def['coronary'][bc['Pim']]:
f.write(str(m[0]) + ' ' + str(m[1]) + '\n')
# close all opened files
for t in u_bc_types:
files[t].close()
return fnames, False
def copy_files(self):
# get solver options
opt = self.opt
# define paths
sim_dir = self.db.get_solve_dir_3d(self.geo)
fpath_surf = os.path.join(sim_dir, 'mesh-complete', 'mesh-surfaces')
# create simulation folder
os.makedirs(fpath_surf, exist_ok=True)
# copy inflow
np.savetxt(os.path.join(sim_dir, 'inflow.flow'), opt['inflow_data'])
# shutil.copy(self.db.get_sv_flow_path(self.geo, '3d'), os.path.join(sim_dir, 'inflow.flow'))
# copy cap meshes
for f in glob.glob(os.path.join(self.db.get_sv_meshes(self.geo), 'caps', '*.vtp')):
shutil.copy(f, fpath_surf)
# copy surface and volume mesh
shutil.copy(self.db.get_sv_surface(self.geo), os.path.join(sim_dir, opt['mesh_vtp']))
shutil.copy(self.db.get_volume_mesh(self.geo), os.path.join(sim_dir, opt['mesh_vtu']))
# copy initial condition mesh
shutil.copy(self.db.get_initial_conditions(self.geo), os.path.join(sim_dir, opt['mesh_initial']))
# copy wall mesh
shutil.copy(os.path.join(self.db.get_sv_meshes(self.geo), 'walls_combined.vtp'), os.path.join(sim_dir, opt['mesh_walls']))
def copy_file(self, src, trg_dir):
trg = os.path.join(self.db.get_svproj_dir(self.geo), self.db.svproj.dir[trg_dir], os.path.basename(src))
shutil.copy2(src, trg)
def make_folders(self):
# make all project sub-folders
for s in self.db.svproj.dir.values():
os.makedirs(os.path.join(self.db.get_svproj_dir(self.geo), s), exist_ok=True)
# copy image
if self.db.get_img(self.geo) is not None:
self.copy_file(self.db.get_img(self.geo), 'images')
# copy volume mesh
self.copy_file(self.db.get_volume_mesh(self.geo), 'meshes')
# copy surface mesh
self.copy_file(self.db.get_sv_surface(self.geo), 'meshes')
self.copy_file(self.db.get_sv_surface(self.geo), 'models')
return True
def check_files(self):
# check if files exist
if self.db.get_volume_mesh(self.geo) is None:
raise RuntimeError('no volume mesh')
if self.db.get_sv_surface(self.geo) is None:
raise RuntimeError('no SV surface mesh')
# if self.db.get_img(self.geo) is None:
# raise RuntimeError('no medical image')
def print_props(f, props, t):
for h in props:
f.write(t + '<prop key="' + h[0] + '" value="' + h[1] + '" />\n')
def array_to_sv(array):
sv_str = ''
for j, (t, i) in enumerate(array):
sv_str += str(t) + ' ' + str(i)
if j < array.shape[0] - 1:
sv_str += '
'
return sv_str
def rc_to_r(bc_def):
"""
Convert all boundary conditions to resistance (for steady flow simulation)
"""
for s, t in bc_def['bc_type'].items():
bc = bc_def['bc'][s]
bc_def['bc_type'][s] = 'resistance'
if t == 'resistance':
pass
elif t == 'rcr':
bc_def['bc'][s] = {'R': bc['Rp'] + bc['Rd'], 'Po': bc['Po']}
elif t == 'coronary':
bc_sv = coronary_sv_to_oned(bc)
bc_def['bc'][s] = {'R': bc_sv['Ra1'] + bc_sv['Ra2'] + bc_sv['Rv1'], 'Po': bc_sv['P_v']}
return bc_def
def main(db, geometries, params):
for geo in geometries:
if params.mode is not None:
mode = params.mode
else:
mode = ''
print('Running geometry ' + geo)
try:
# get meshes
get_meshes(db, geo)
# create sv project
pj = Project(db, geo, mode)
pj.create_sv_project()
except Exception as e:
# print(e)
continue
if __name__ == '__main__':
descr = 'Generate an svproject folder'
d, g, p = input_args(descr)
main(d, g, p)