-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathasymptotic_pressure.py
executable file
·489 lines (406 loc) · 15 KB
/
asymptotic_pressure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#!/usr/bin/env python
import os
import sys
import re
import vtk
import argparse
import pdb
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
from collections import defaultdict
from scipy.interpolate import interp1d
from vtk.util.numpy_support import numpy_to_vtk as n2v
from vtk.util.numpy_support import vtk_to_numpy as v2n
sys.path.append('..')
from get_database import Database, Post, input_args
from vtk_functions import read_geo, write_geo, get_all_arrays
from simulation_io import get_dict, get_caps_db, collect_results_db_3d_3d, collect_results_db_1d_3d, collect_results_db_0d
from get_sv_project import coronary_sv_to_oned
from get_statistics_bc import collect_errors
fsize = 12
plt.rcParams.update({'font.size': fsize})
# plt.style.use('dark_background')
def plot_correlation(db):
post = Post()
# get numerical time constants
res_num = get_dict(db.get_convergence_path())
# only plot subset of geometries
geometries_paper = db.get_geometries_select('paper')
# convergence criterion
tol = 0.01
fig1, ax1 = plt.subplots(1, 2, dpi=300, figsize=(12, 4), sharex='row')
for pos, f in enumerate(['pressure', 'flow']):
i_conv_all = []
tau_all = []
for geo in res_num:
if geo not in geometries_paper:
continue
params = db.get_bcs(geo)
# skip non-RCR models
types = np.unique(list(params['bc_type'].values()))
if not len(types) == 1 or not types[0] == 'rcr':
continue
i_conv = res_num[geo]['i_conv'][f]
tau = np.mean(res_num[geo]['tau'][f])
col = post.colors[params['params']['deliverable_category']]
ax1[pos].plot(tau, i_conv, marker='o', color=col)
i_conv_all += [i_conv]
tau_all += [tau]
# fit linear equation to data
if db.study == '1spb_length' and f == 'pressure':
# coef = np.polyfit(tau_all, i_conv_all, 1)
# poly = np.poly1d(coef)
# ax1.plot(tau_all, poly(tau_all), 'k-')
t = np.linspace(0, 10, num=10000)
fx = - np.log(tol) * t
ax1[pos].plot(t, fx.astype(int) + 1, 'k-')
# plt.yscale('log')
ax1[pos].set_title(f.capitalize())
ax1[pos].xaxis.grid('minor')
ax1[pos].yaxis.grid(True)
ax1[pos].set_xlim(0, 10)
ax1[pos].set_ylim(0, 50)
ax1[pos].set_xlabel(r'Model time constant $\bar{\tau}/T$ [-]')
if pos == 0:
ax1[pos].set_ylabel(r'Number of cardiac cycles [-]')
fname = os.path.join(db.get_statistics_dir(), 'correlation.png')
fig1.savefig(fname, bbox_inches='tight')
plt.close(fig1)
def plot_convergence(db):
post = Post()
# get numerical time constants
res_num = get_dict(db.get_convergence_path())
fig1, ax1 = plt.subplots(dpi=400, figsize=(15, 6))
markers = {'flow': 'o', 'pressure': 'x'}
geos = []
i = 0
for geo in res_num:
params = db.get_bcs(geo)
i_conv = res_num[geo]['i_conv']
col = post.colors[params['params']['deliverable_category']]
for f, m in markers.items():
ax1.plot(i, i_conv[f], marker=m, color=col)
geos += [geo]
i += 1
# plt.yscale('log')
ax1.xaxis.grid('minor')
ax1.yaxis.grid(True)
# ax1.set_ylim(0, 13)
plt.xticks(np.arange(len(geos)), geos, rotation='vertical')
plt.ylabel('Number of cardiac cycles [-]')
fname = os.path.join(db.get_statistics_dir(), 'convergence.png')
fig1.savefig(fname, bbox_inches='tight')
def make_err_plot(db, geo, ax, pos, m, f, p, res_m, errors, time, title_study=''):
post = Post()
t = 0
# study names
studies = {'ini_zero': 'Zero',
'ini_steady': 'Steady',
'ini_irene': 'Steady (start from mean)',
'ini_1d_quad': '1D'}
# get caps
caps = get_caps_db(db, geo)
del caps['inflow']
# get boundary conditions
bcs = db.get_bcs(geo)['bc']
bct = db.get_bcs(geo)['bc_type']
# get time
n_cycle = time[m + '_n_cycle']
# plot times
times_plot = []
times_all = []
for k in range(1, n_cycle + 1):
times_all += [np.where(time[m + '_i_cycle_' + str(k)])[0]]
times_plot += [np.where(time[m + '_i_cycle_' + str(k)])[0][t]]
times_all = np.array(times_all)
# add last time step
if t == 0:
times_plot += [np.where(time[m + '_i_cycle_' + str(n_cycle)])[0][-1]]
cycles = np.arange(len(times_plot))
if t != 0:
cycles += 1
# error threshold for a converged solution
thresh = 1.0e-2
e_thresh = 'asymptotic'
# get numerical time constant
res_num = get_dict(db.get_convergence_path())
if geo in res_num:
tau = np.mean(res_num[geo]['tau']['pressure'])
alpha = 1 / (np.exp(1 / tau) - 1)
thresh_cyclic = thresh / alpha
else:
thresh_cyclic = np.nan
# thresh_cyclic = 0
# pdb.set_trace()
#
# collect results
res_m_all = []
res_m_t = []
res_m_m = []
res_0d_t = []
res_qm_t = []
for c, br in caps.items():
res_m_all += [res_m[br][f][m + '_all']]
res_m_t += [res_m[br][f][m + '_all'][times_plot]]
# res_0d_t += [interp1d(res_0d[br]['t'], res_0d[br]['p'], fill_value='extrapolate')(time[m][t]).tolist()]
res_0d_t += [res_m_t[-1][-1]]
res_m_m += [np.mean(res_m[br][f][m + '_all'][times_all], axis=1)]
if bct[c] == 'resistance':
resistance = bcs[c]['R']
elif bct[c] == 'rcr':
resistance = bcs[c]['Rd'] + bcs[c]['Rp']
elif bct[c] == 'coronary':
cor = coronary_sv_to_oned(bcs[c])
resistance = cor['Ra1'] + cor['Ra2'] + cor['Rv1']
res_qm_t += [resistance * np.mean(res_m[br]['flow'][m + '_cap'])]
# make plot
c_max = 20
x_min = 1
style = 'x-'
if p == 'cycle':
title = 'Solution'
x_min = 0
style = '-'
x = time[m + '_all'] / time[m][-1]
y = np.array(res_m_all).T * post.convert[f]
xticks = [0]
ylabel = f.capitalize() + ' [' + post.units[f] + ']'
elif p == 'cycle_norm':
title = 'Normalized solution'
x_min = 0
xticks = [0]
style = '-'
x = time[m + '_all'] / time[m][-1]
y = np.array(res_m_all).T / np.array(res_m_m)[:, -1]
ylabel = f.capitalize() + ' [-]'
elif p == 'initial':
title = 'Initial values'
x = cycles
y = np.array(res_m_t).T * post.convert[f]
xticks = [1]
ylabel = 'Initial ' + f + ' [' + post.units[f] + ']'
elif p == 'mean':
title = 'Mean cycle solution'
x = cycles[1:]
y = np.array(res_m_m).T * post.convert[f]
y /= y[-1]
xticks = [1]
# ylabel = 'Mean ' + f + ' [' + post.units[f] + ']'
ylabel = 'Mean ' + f + ' [-]'
elif p in 'cyclic':
title = 'Cyclic error $\epsilon_n$'
x = cycles[1:-1] + 1
y = errors['cyclic'][f]
xticks = [2]
ylabel = 'Cyclic ' + f + ' error [-]'
elif p in 'asymptotic':
title = 'Asymptotic error $\epsilon_\infty$'
x = cycles[1:-1]
y = errors['asymptotic'][f][:-1]
xticks = [1]
ylabel = 'Asymptotic ' + f + ' error [-]'
else:
title = ''
x = np.nan
y = np.nan
xticks = []
xticks += [c_max]
# converged time step
conv = np.where(np.all(errors[e_thresh][f] < thresh, axis=1))[0]
if not conv.any():
i_conv = -1
else:
i_conv = np.min(conv)
if e_thresh == 'cyclic':
i_conv += 2
elif e_thresh == 'asymptotic':
i_conv += 1
if p in 'asymptotic':
print(f[0] + ' ' + str(i_conv))
xticks += [i_conv]
# plot
if p == 'initial' or p == 'mean':
plt.gca().set_prop_cycle(plt.rcParams['axes.prop_cycle'])
# ax[pos].plot([cycles[0], cycles[-1]], np.vstack((y[-1], y[-1])), '--')
ax[pos].plot([0, 999], [1, 1], 'k-')
ax[pos].set_ylim([0, 1.2])
# ax.plot([cycles[0], cycles[-1]], np.vstack((res_qm_t, res_qm_t)) * post.convert[f], '--')
ax[pos].plot(x, y, style)
ax[pos].axvline(x=i_conv, color='k')
if not title_study or pos[1] == 0:
ax[pos].set_ylabel(ylabel)
x_eps = 0.5 * np.max(xticks) / 20
ax[pos].set_xlim([x_min - x_eps, np.max(xticks) + x_eps])
# ax[pos].set_xlim([0, np.max(x)])
ax[pos].set_xticks(xticks)
ax[pos].grid('both')
if p in ['cyclic', 'asymptotic']:
ax[pos].set_yscale('log')
if f == 'pressure':
ax[pos].set_ylim([1e-4, 1])
elif f == 'flow':
ax[pos].set_ylim([1e-5, 1e-1])
# ax[pos].yaxis.set_major_formatter(mtick.PercentFormatter(1.0, 2))
if p == 'cyclic' and e_thresh == 'asymptotic':
ax[pos].plot([0, 999], [thresh_cyclic, thresh_cyclic], 'k-')
if p == e_thresh:
ax[pos].plot([0, 999], [thresh, thresh], 'k-')
if pos[0] == 1:
ax[pos].set_xlabel('Cardiac cycle [-]')
if pos[0] == 0:
if title_study:
ax[pos].set_title(studies[title_study])
else:
ax[pos].set_title(title)
ax[pos].set_prop_cycle(plt.rcParams['axes.prop_cycle'])
return y, i_conv
def get_time_constants(db, geo, c_res):
const = defaultdict(dict)
# get cap names
tau_ana_dic = db.get_time_constants(geo)
caps = get_caps_db(db, geo)
del caps['inflow']
n_out = len(caps)
# time constants (analytical)
const['tau']['ana'] = np.array([tau_ana_dic[c] for c in caps])
# factor between asymptotic and cyclic error (analytical)
const['alpha']['ana'] = 1 / (np.exp(1 / const['tau']['ana']) - 1)
const['tau']['num'] = {}
const['alpha']['num'] = {}
# tolerance for the linear slope in a log-plot
tol = {'pressure': 1e-10,
'flow': 1e-6}
for f in c_res.keys():
# # chose range of cardiac cycles to evaluate time constants (within given tolerance)
i_min = -1
i_good = np.sum(np.abs(np.diff(-np.diff(np.log(c_res[f]['cyclic']), axis=0), axis=0)) < tol[f], axis=1) == n_out
for i, g in enumerate(i_good):
if i_min == -1 and g:
i_min = i
continue
if i_min > -1 and not g:
i_max = i - 1
break
else:
i_min = 0
i_max = np.min([10, c_res[f]['cyclic'].shape[0] - 1])
i_calc = np.arange(i_min, i_max)
# time constants (numerical)
const['tau']['num'][f] = 1 / np.mean(-np.diff(np.log(c_res[f]['cyclic'][i_calc]), axis=0), axis=0)
# factor between asymptotic and cyclic error (numerical)
const['alpha']['num'][f] = np.mean(c_res[f]['asymptotic'][i_calc + 1] / c_res[f]['cyclic'][i_calc], axis=0)
return const
def plot_pressure(study, geo):
# plot settings
m = '3d_rerun'
# m = '1d'
# m = '0d'
fields = ['pressure', 'flow']
# fields = ['pressure']
# comparisons = ['cycle', 'initial', 'cyclic', 'asymptotic']
# comparisons = ['cycle', 'mean', 'asymptotic']
# comparisons = ['cycle', 'mean', 'cyclic', 'asymptotic']
comparisons = ['cycle', 'mean', 'cyclic', 'asymptotic']
# comparisons = ['cycle_norm', 'mean', 'cyclic', 'asymptotic']
# get database
db = Database(study)
# res_m, time = collect_results_db_1d_3d(db, geo)
if m == '0d':
res_m, time = collect_results_db_0d(db, geo)
elif m == '3d_rerun':
res_m, time = collect_results_db_3d_3d(db, geo)
else:
return
if res_m is None:
return
if os.path.exists(db.get_bc_0D_path(geo, m)):
res_0d = np.load(db.get_bc_0D_path(geo, m), allow_pickle=True).item()
else:
return
print(geo)
errors = collect_errors(res_m, res_0d, time, m)
fig, ax = plt.subplots(len(fields), len(comparisons), figsize=(5 * len(comparisons), 5 * len(fields)), dpi=300)
c_res = defaultdict(dict)
i_conv = {}
for j, f in enumerate(fields):
# for i, p in zip([0, 1, 2, 2], comparisons):
for i, p in enumerate(comparisons):
if len(fields) == 1:
pos = i
else:
pos = (j, i)
c_res[f][p], i_conv[f] = make_err_plot(db, geo, ax, pos, m, f, p, res_m, errors, time)
f_out = db.get_statistics_dir()
fname = 'convergence_' + study + '_' + geo
if len(fields) == 1:
fname += '_' + f
fpath = os.path.join(f_out, fname + '.png')
# plt.subplots_adjust(right=0.8)
fig.tight_layout()
fig.savefig(fpath, bbox_inches='tight')
plt.close(fig)
# plot time constants
const = get_time_constants(db, geo, c_res)
for f in fields:
for c, v in const.items():
fig, ax = plt.subplots(figsize=(6, 4), dpi=300)
ax.plot(const[c]['ana'], 'o')
ax.plot(const[c]['num'][f], 'x')
ax.grid('both')
ax.legend(['analytical', 'numerical'])
ax.set_xlabel('Outlet')
ax.set_ylabel(c)
os.makedirs(os.path.join(f_out, c), exist_ok=True)
fpath = os.path.join(f_out, c, c + '_' + study + '_' + geo + '_' + f + '.png')
fig.savefig(fpath, bbox_inches='tight')
plt.close(fig)
return {'tau': const['tau']['num'], 'i_conv': i_conv}
def plot_pressure_studies(geo):
# plot settings
m = '3d_rerun'
fields = ['pressure', 'flow']
# studies = ['ini_zero', 'ini_steady', 'ini_1d_quad']
# studies = ['ini_zero', 'ini_steady', 'ini_irene', 'ini_1d_quad']
studies = ['ini_zero', 'ini_irene', 'ini_1d_quad']
# studies = ['ini_1d_quad', 'ini_asymp_pres_1d_velo', 'ini_1d_pres_asymp_velo']
comparison = 'asymptotic'
# comparison = 'mean'
print(geo)
fig, ax = plt.subplots(len(fields), len(studies), figsize=(6 * len(studies), 5 * len(fields)), dpi=300, sharey='row')
for j, f in enumerate(fields):
for i, p in enumerate(studies):
# get database
db = Database(p)
if os.path.exists(db.get_bc_0D_path(geo, m)):
res_0d = np.load(db.get_bc_0D_path(geo, m), allow_pickle=True).item()
else:
return
res_m, time = collect_results_db_3d_3d(db, geo)
errors = collect_errors(res_m, res_0d, time, m)
if len(fields) == 1:
pos = i
else:
pos = (j, i)
make_err_plot(db, geo, ax, pos, m, f, comparison, res_m, errors, time, title_study=p)
f_out = '/home/pfaller/work/paper/asymptotic'
fname = 'comparison_' + geo
if len(fields) == 1:
fname += '_' + f
fpath = os.path.join(f_out, fname + '.png')
# plt.subplots_adjust(right=0.8)
fig.tight_layout()
fig.savefig(fpath, bbox_inches='tight')
plt.close(fig)
def main(db, geo):
for g in geo:
# plot_pressure_studies(g)
res = plot_pressure(db.study, g)
if res is not None:
db.add_convergence(g, res)
if __name__ == '__main__':
descr = 'Make plots for 3D-1D-0D paper'
d, g, _ = input_args(descr)
# main(d, g)
# plot_convergence(d)
plot_correlation(d)