-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfgsm_llm_attack.py
41 lines (34 loc) · 1.56 KB
/
fgsm_llm_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_model(model_name="gpt2"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval() # Set to evaluation mode
return model, tokenizer
def generate_loss(model, tokenizer, text):
inputs = tokenizer(text, return_tensors="pt")
inputs["input_ids"].requires_grad = True # Enable gradient tracking
labels = inputs["input_ids"]
outputs = model(**inputs, labels=labels)
loss = outputs.loss
return loss, inputs
def apply_fgsm_attack(inputs, loss, epsilon=0.1):
loss.backward() # Compute gradients
gradients = inputs["input_ids"].grad # Get gradients
sign_grad = gradients.sign() # Get sign of gradients
perturbed_input = inputs["input_ids"] + epsilon * sign_grad # Apply perturbation
perturbed_input = perturbed_input.clamp(0, 50256) # Ensure valid token IDs
return perturbed_input
def compare_outputs(tokenizer, original_text, perturbed_input):
perturbed_text = tokenizer.decode(perturbed_input[0].tolist())
print("Original Text:", original_text)
print("Adversarial Example:", perturbed_text)
def main():
model, tokenizer = load_model()
original_text = "The weather today is great."
epsilon = 0.1 # You can modify this value
loss, inputs = generate_loss(model, tokenizer, original_text)
perturbed_input = apply_fgsm_attack(inputs, loss, epsilon)
compare_outputs(tokenizer, original_text, perturbed_input)
if __name__ == "__main__":
main()