-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBC- Prior 3.py
70 lines (59 loc) · 1.76 KB
/
BC- Prior 3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 8 18:00:17 2024
Obtains posterior distribution for parallax problem for given specified prior
@author: SROTOSHI GHOSH
"""
import numpy as np
import matplotlib.pyplot as plt
def L(w,r,s): #defines the gaussian likelihood
t=np.exp((-1*(w-1/r)**2)/(2*s**2))
P=t/(s*np.sqrt(2*np.pi))
return P
def f(w,r,s): #defines the function for integration
t=np.exp((-1*(w-1/r)**2)/(2*s**2))
P=(t*3*r**2)/(s*np.sqrt(2*np.pi))
return P
def normalization(w,r,sd):
x=[]
for i in r:
if (i>=0):
x.append(i)
a=np.min(x)
#lower limit of integration taken to be the smallest positive number as defined prior is 0 for -ve distances
b=np.max(x)
n=10**3
h=(b-a)/n
s=f(w,a,sd)+f(w,b,sd)
for i in range (1,int(n)):
t=a+(i*h)
if (i%2==0):
s+=2*f(w,t,sd)
else:
s+=4*f(w,t,sd)
s=s*(h/3.0)
return s
fu=[0.1,0.2,0.5,1.0] #fractional parallax uncertainty
w=1/100 #measured parallax
sd=[]
for i in range (0,len(fu)):
sd.append(fu[i]*w)
r=np.arange(-10,300,0.001) #a range of distances are defined
rlim=1000
p=[] #defining the necessary prior which considers the uniform volume density of stars up to rlim=1000
for i in r:
if (rlim>=i>0):
p.append(3*i**2)
else:
p.append(0)
for k in range (0,len(sd)):
post_pdf=[] #evaluation of the normalized posterior pdf
N=normalization(w,r,sd[k])#in order to evaulate the normalization constant
l=f"f = {fu[k]} "
for i in range (0,len(r)):
term=(p[i]*L(w,r[i],sd[k]))/N
post_pdf.append(term)
plt.plot(r,post_pdf,label=l)
plt.xlabel("r")
plt.ylabel("P(r|w)")
plt.legend()