-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_concate.py
238 lines (206 loc) · 9.89 KB
/
test_concate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import os
import platform
import matplotlib.pyplot as plt
import shutil
import time
from pathlib import Path
import numpy as np
import glob
import tqdm
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from torch.autograd import Variable
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
from utils.torch_utils import select_device, load_classifier, time_synchronized
from utils.imagexy2shp import *
def nms(bounding_boxes, confidence_score, threshold):
# If no bounding boxes, return empty list
if len(bounding_boxes) == 0:
return [], []
# Bounding boxes
boxes = np.array(bounding_boxes)
# coordinates of bounding boxes
start_x = boxes[:, 0]
start_y = boxes[:, 1]
end_x = boxes[:, 2]
end_y = boxes[:, 3]
# Confidence scores of bounding boxes
score = np.array(confidence_score)
# Picked bounding boxes
picked_boxes = []
picked_score = []
# Compute areas of bounding boxes
areas = (end_x - start_x + 1) * (end_y - start_y + 1)
# Sort by confidence score of bounding boxes
order = np.argsort(score)
# Iterate bounding boxes
while order.size > 0:
# The index of largest confidence score
index = order[-1]
# Pick the bounding box with largest confidence score
picked_boxes.append(bounding_boxes[index])
picked_score.append(confidence_score[index])
# Compute ordinates of intersection-over-union(IOU)
x1 = np.maximum(start_x[index], start_x[order[:-1]])
x2 = np.minimum(end_x[index], end_x[order[:-1]])
y1 = np.maximum(start_y[index], start_y[order[:-1]])
y2 = np.minimum(end_y[index], end_y[order[:-1]])
# Compute areas of intersection-over-union
w = np.maximum(0.0, x2 - x1 + 1)
h = np.maximum(0.0, y2 - y1 + 1)
intersection = w * h
# Compute the ratio between intersection and union
ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)
left = np.where(ratio < threshold)
order = order[left]
return picked_boxes, picked_score
def detect():
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
gap = opt.gap
# Initialize
set_logging()
device = select_device(opt.device)
# if os.path.exists(out):
# shutil.rmtree(out) # delete output folder
# os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# imglist = glob.glob(f'{source}/*.tif')
imglist = [source]
font = cv2.FONT_HERSHEY_SIMPLEX # 定义字体
font_size = 1
frame_size = imgsz - gap
t0 = time.time()
# get class_dict from txt
f = open('./data/cls_dict.txt')
data = f.readlines()
cls_dict = []
for cls in data:
cls = cls.replace('\n', '').strip()
if cls == '':
break
cls_dict.append(cls)
for j, imgPath in tqdm.tqdm(enumerate(imglist)):
image_name = os.path.split(imgPath)[-1].split('.')[0]
image = cv2.imread(imgPath, cv2.IMREAD_COLOR)
dataset = gdal.Open(imgPath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
raw_h, raw_w = image.shape[:2]
row = raw_h // frame_size + 1
col = raw_w // frame_size + 1
radius_h = row * frame_size - raw_h
radius_w = col * frame_size - raw_w
image = cv2.copyMakeBorder(image, 0, radius_h, 0, radius_w, cv2.BORDER_REFLECT)
image = cv2.copyMakeBorder(image, 0, gap, 0, gap, cv2.BORDER_REFLECT)
boxes, scores = [], []
for i in tqdm.tqdm(range(row)):
for j in range(col):
image1 = image.copy()
subImg = image1[i * frame_size:(i + 1) * frame_size + gap,
j * frame_size:(j + 1) * frame_size + gap, :]
subImg_ = subImg.copy()
subImg = subImg.astype(np.float32)
subImg /= 255.0 # 0 - 255 to 0.0 - 1.0
subImg = np.transpose(subImg, (2, 0, 1))
subImg = Variable(torch.from_numpy(np.array([subImg])).cuda())
subImg = subImg.half() if half else subImg.float()
# Inference
t1 = time_synchronized()
pred = model(subImg, augment=opt.augment)[0]
# Apply NMS
preds = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
agnostic=opt.agnostic_nms)
try:
for pred in preds[0]:
pred = pred.cpu().numpy()
pred[:4] = pred[:4].astype(np.int32).clip(min=0, max=imgsz - 1)
pred[0] = pred[0] + j * frame_size
pred[1] = pred[1] + i * frame_size
pred[2] = pred[2] + j * frame_size
pred[3] = pred[3] + i * frame_size
boxes.append([pred[0], pred[1], pred[2], pred[3], pred[5].astype(np.int32)])
scores.append(pred[4])
# cv2.rectangle(subImg_, (int(pred[0]), int(pred[1])), (int(pred[2]), int(pred[3])), (0, 0, 255), 3)
# text_location = (int(pred[0]) + 2, int(pred[1]) - 4)
# subImg_ = cv2.putText(subImg_, f'garbage {pred[4] * 100:.2f}%', text_location, font,
# fontScale=0.5, color=(0, 0, 255))
# plt.imshow(subImg_)
# plt.show()
except:
continue
# 丢弃原图像边界外的框
boxes, scores = np.array(boxes), np.array(scores)
keep = (boxes[:, 0] < raw_w) & (boxes[:, 1] < raw_h)
boxes = boxes[keep]
scores = scores[keep]
assert len(boxes) == len(scores), print(f'length of boxes :{len(boxes)}, length of scores :{len(scores)}')
boxes, scores = nms(boxes, scores, opt.iou_thres)
boxes_, scores_, clss_ = [], [], []
for box, score in zip(boxes, scores):
# with open(f"{out}/{image_name}.txt", 'a+') as f:
# f.write(f"{score} {int(box[0])} {int(box[1])} {int(box[2])} {int(box[3])} \n")
xmin, ymin = imagexy2geo(dataset, int(box[0]), int(box[1]))
xmax, ymax = imagexy2geo(dataset, int(box[2]), int(box[3]))
boxes_.append([xmin, ymin, xmax, ymax])
scores_.append(int(score * 100))
clss_.append(box[4])
cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2)
text_location = (int(box[0]) + 2, int(box[1]) - 4)
image = cv2.putText(image, f'{score * 100:.2f}%', text_location, font,
fontScale=0.5, color=(0, 0, 255))
# plt.imshow(image)
# plt.show()
# cv2.imwrite(os.path.join(out, f'{image_name}.tif'), image)
# results2shp
# imagexy2shp(imgPath, f"{out}/{image_name}.shp", boxes_, scores_)
imagexy2shp(imgPath, out, boxes_, scores_, clss_, cls_dict)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
f = open('config_test.txt')
data = f.readlines()
source = data[0].replace('\n', '')
weigths = data[1].replace('\n', '')
output = data[2].replace('\n', '')
out_root = os.path.split(output)[0]
assert os.path.exists(out_root), print(f'The out path is not existed, please create this path:{out_root}')
# print(source, weigths, output)
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=weigths, help='model.pt path(s)')
parser.add_argument('--source', type=str, default=source, help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default=output, help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
parser.add_argument('--gap', type=int, default=100, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()