-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm.cpp
135 lines (128 loc) · 3.87 KB
/
algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include "algorithm.h"
algorithm::algorithm(algorithm::nodeMap &p)
{
algo = &distance::manhattan; //select distance algorithm
// init map, close set, set start point, end point
for (int i = 0; i < p.size(); i++) {
std::vector<int> gt;
gt.resize(p[i].size(), 0);
std::vector<int> st;
st.resize(p[i].size(), 0);
for (int j = 0; j < p[i].size(); j++) {
if (p[i][j].val == "E") {
x2 = i;
y2 = j;
} else if (p[i][j].val == "S") {
x1 = i;
y1 = j;
st[j] = 1;
} else if (p[i][j].val == "O") {
gt[j] = 1;
}
}
s.push_back(st);
g.push_back(gt);
}
this->p = p;
}
void algorithm::setAlgo(int (distance::*algo)(int, int, int, int)) {
this->algo = algo;
}
algorithm::nodeMap algorithm::start() {
return astar(x1,y1,x2,y2,p,g,s,algo);
}
int algorithm::distance::chebyshev(int i, int j, int x2, int y2) {
return std::max(abs(i - x2), abs(j - y2)); //雪比切夫距离
}
int algorithm::distance::bfs(int i, int j, int x2, int y2) {
i = j = x2 = y2 = 0;
return 0; //雪比切夫距离
}
int algorithm::distance::euclidean(int i, int j, int x2, int y2) {
return (int) (sqrt((i - x2) * (i - x2) + (j - y2) * (j - y2))); //欧几里德距离
}
int algorithm::distance::manhattan(int i, int j, int x2, int y2) {
return abs(i - x2) + abs(j - y2); //曼哈顿距离
}
algorithm::nodeMap algorithm::astar(int x1, int y1, int x2, int y2, algorithm::nodeMap p,
const std::vector<std::vector<int>> g, std::vector<std::vector<int>> s,
int(distance::*algo)(int, int, int, int)) {
if (p.empty() || p[0].empty() || (x1==x2&&y1==y2) ||
x1<0||x2<0||y1<0||y2<0||x1>=p.size()||x2>=p.size()||y1>=p[0].size()||y2>=p[0].size())
return p;
int M = p.size();
int N = p[0].size();
distance dis;
int c = 0;
s[x1][y1] = 1;
std::priority_queue<Node> q;
Node n(x1, y1);
n.h = (dis.*algo)(x1, y1, x2, y2);
n.val = "S";
q.push(n);
p[x1][y1] = n;
bool exit = false;
while (!q.empty()) {
n = q.top();
q.pop();
for (int i = 0; i < 4; ++i) {
int a = diri[i] + n.i;
int b = dirj[i] + n.j;
if (overflow(a, b, M, N) && s[a][b] != 1 && g[a][b] != 1) {
Node t(a, b);
t.g = n.g + 1;
t.h = (dis.*algo)(a, b, x2, y2);
c++;
p[a][b] = t;
p[a][b].val = dir[i];
s[a][b] = 1;
q.push(t);
if (a == x2 && b == y2) {
print(p,x2,y2);
std::cout << "ok " << c << " step" << std::endl;
exit = true;
break;
}
}
}
if (exit) {
break;
}
}
if (!exit) {
std::cout << "failed" << std::endl;
}
return p;
}
bool algorithm::overflow(int a, int b, int m, int n) {
return a >= 0 && b >= 0 && a < m && b < n;
}
void algorithm::print(algorithm::nodeMap &p, int x2, int y2) {
int x = x2, y = y2;
int len = 0;
while (p[x][y].val != "S") {
if (p[x][y].val == dir[0]) {
p[x][y].val = "A";
x -= diri[0];
y -= dirj[0];
len++;
} else if (p[x][y].val == dir[1]) {
p[x][y].val = "A";
x -= diri[1];
y -= dirj[1];
len++;
} else if (p[x][y].val == dir[2]) {
p[x][y].val = "A";
x -= diri[2];
y -= dirj[2];
len++;
} else if (p[x][y].val == dir[3]) {
p[x][y].val = "A";
x -= diri[3];
y -= dirj[3];
len++;
}
}
std::cout << "length " << len << std::endl;
p[x2][y2].val = "E";
}