diff --git a/Linux/CMakeLists.txt b/Linux/CMakeLists.txt index 43b601ab06..84bab2f0a5 100644 --- a/Linux/CMakeLists.txt +++ b/Linux/CMakeLists.txt @@ -867,8 +867,6 @@ set(SIV3D_INTERNAL_SOURCES ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc - ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc - ../Siv3D/src/ThirdParty/double-conversion/strtod.cc ../Siv3D/src/ThirdParty/easyexif/exif.cpp diff --git a/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp b/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp index 906024d87e..05c880ed69 100644 --- a/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp +++ b/Siv3D/src/Siv3D/FormatFloat/SivFormatFloat.cpp @@ -15,7 +15,7 @@ # include # include # include -# include +# include namespace s3d { diff --git a/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp b/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp index 54e2ed5aa7..a1e4576652 100644 --- a/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp +++ b/Siv3D/src/Siv3D/LicenseManager/LicenseList.hpp @@ -417,6 +417,29 @@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.)-" }, +{ +UR"-(fast_float)-", + +UR"-(Copyright (c) 2021 The fast_float authors)-", + +UR"-(Permission is hereby granted, free of charge, to any person obtaining a copy of this +software and associated documentation files (the "Software"), to deal in the Software +without restriction, including without limitation the rights to use, copy, modify, +merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice shall be included in all copies +or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, +INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT +HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF +CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE +OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)-" +}, + { UR"-(fmt)-", diff --git a/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp b/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp index 62b67dadd9..7ba37fe0f7 100644 --- a/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp +++ b/Siv3D/src/Siv3D/ParseFloat/SivParseFloat.cpp @@ -9,55 +9,52 @@ // //----------------------------------------------- +# include # include # include +# include # include -# include namespace s3d { namespace detail { - inline static constexpr double sNaN = std::numeric_limits::signaling_NaN(); - - static double ParseDouble(const StringView s) + [[noreturn]] + static void ThrowParseError(const StringView s) { - using namespace double_conversion; + throw ParseError{ U"ParseFloat(\"{}\") failed"_fmt(s) }; + } - const int flags = - StringToDoubleConverter::ALLOW_LEADING_SPACES - | StringToDoubleConverter::ALLOW_TRAILING_SPACES - | StringToDoubleConverter::ALLOW_SPACES_AFTER_SIGN - | StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY; - StringToDoubleConverter conv(flags, 0.0, sNaN, "inf", "nan"); + static double ParseDouble(StringView s) + { + while (IsSpace(s.front())) + { + s.remove_prefix(1); + } - int unused; - const double result = conv.Siv3D_StringToIeee(s.data(), static_cast(s.length()), true, &unused); + double result; + auto [p, ec] = fast_float::from_chars(s.data(), (s.data() + s.size()), result); - if (std::memcmp(&result, &sNaN, sizeof(double)) == 0) + if (ec != std::errc{}) { - throw ParseError(U"ParseFloat(\"{}\") failed"_fmt(s)); + ThrowParseError(s); } return result; } template - static Optional ParseFloatingPointOpt(const StringView s) noexcept + static Optional ParseFloatingPointOpt(StringView s) noexcept { - using namespace double_conversion; - - const int flags = - StringToDoubleConverter::ALLOW_LEADING_SPACES - | StringToDoubleConverter::ALLOW_TRAILING_SPACES - | StringToDoubleConverter::ALLOW_SPACES_AFTER_SIGN - | StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY; - StringToDoubleConverter conv(flags, 0.0, sNaN, "inf", "nan"); + while (IsSpace(s.front())) + { + s.remove_prefix(1); + } - int unused; - const double result = conv.Siv3D_StringToIeee(s.data(), static_cast(s.length()), true, &unused); + double result; + auto [p, ec] = fast_float::from_chars(s.data(), (s.data() + s.size()), result); - if (std::memcmp(&result, &sNaN, sizeof(double)) == 0) + if (ec != std::errc{}) { return none; } diff --git a/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc index abdd71452b..15123e6a63 100644 --- a/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc +++ b/Siv3D/src/ThirdParty/double-conversion/bignum-dtoa.cc @@ -276,7 +276,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, // Let v = numerator / denominator < 10. // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) -// from left to right. Once 'count' digits have been produced we decide wether +// from left to right. Once 'count' digits have been produced we decide whether // to round up or down. Remainders of exactly .5 round upwards. Numbers such // as 9.999999 propagate a carry all the way, and change the // exponent (decimal_point), when rounding upwards. @@ -370,7 +370,7 @@ static void BignumToFixed(int requested_digits, int* decimal_point, // Returns an estimation of k such that 10^(k-1) <= v < 10^k where // v = f * 2^exponent and 2^52 <= f < 2^53. // v is hence a normalized double with the given exponent. The output is an -// approximation for the exponent of the decimal approimation .digits * 10^k. +// approximation for the exponent of the decimal approximation .digits * 10^k. // // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. // Note: this property holds for v's upper boundary m+ too. @@ -548,7 +548,7 @@ static void InitialScaledStartValuesNegativeExponentNegativePower( // // Let ep == estimated_power, then the returned values will satisfy: // v / 10^ep = numerator / denominator. -// v's boundarys m- and m+: +// v's boundaries m- and m+: // m- / 10^ep == v / 10^ep - delta_minus / denominator // m+ / 10^ep == v / 10^ep + delta_plus / denominator // Or in other words: diff --git a/Siv3D/src/ThirdParty/double-conversion/bignum.cc b/Siv3D/src/ThirdParty/double-conversion/bignum.cc index 8667d84d4d..5c74d70d3d 100644 --- a/Siv3D/src/ThirdParty/double-conversion/bignum.cc +++ b/Siv3D/src/ThirdParty/double-conversion/bignum.cc @@ -136,7 +136,7 @@ void Bignum::AssignHexString(Vector value) { DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert // Accumulates converted hex digits until at least kBigitSize bits. // Works with non-factor-of-four kBigitSizes. - uint64_t tmp = 0; // Accumulates converted hex digits until at least + uint64_t tmp = 0; for (int cnt = 0; !value.is_empty(); value.pop_back()) { tmp |= (HexCharValue(value.last()) << cnt); if ((cnt += 4) >= kBigitSize) { @@ -146,7 +146,8 @@ void Bignum::AssignHexString(Vector value) { } } if (tmp > 0) { - RawBigit(used_bigits_++) = static_cast(tmp); + DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask); + RawBigit(used_bigits_++) = static_cast(tmp & kBigitMask); } Clamp(); } @@ -203,7 +204,7 @@ void Bignum::AddBignum(const Bignum& other) { carry = sum >> kBigitSize; ++bigit_pos; } - used_bigits_ = static_cast((std::max)(bigit_pos, static_cast(used_bigits_))); + used_bigits_ = static_cast(std::max(bigit_pos, static_cast(used_bigits_))); DOUBLE_CONVERSION_ASSERT(IsClamped()); } diff --git a/Siv3D/src/ThirdParty/double-conversion/double-conversion.h b/Siv3D/src/ThirdParty/double-conversion/double-conversion.h deleted file mode 100644 index 6e8884d84c..0000000000 --- a/Siv3D/src/ThirdParty/double-conversion/double-conversion.h +++ /dev/null @@ -1,34 +0,0 @@ -// Copyright 2012 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ -#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ - -#include "string-to-double.h" -#include "double-to-string.h" - -#endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ diff --git a/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc b/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc index 4562f99f49..215eaa96d4 100644 --- a/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc +++ b/Siv3D/src/ThirdParty/double-conversion/double-to-string.cc @@ -56,7 +56,7 @@ bool DoubleToStringConverter::HandleSpecialValues( StringBuilder* result_builder) const { Double double_inspect(value); if (double_inspect.IsInfinite()) { - if (infinity_symbol_ == NULL) return false; + if (infinity_symbol_ == DOUBLE_CONVERSION_NULLPTR) return false; if (value < 0) { result_builder->AddCharacter('-'); } @@ -64,7 +64,7 @@ bool DoubleToStringConverter::HandleSpecialValues( return true; } if (double_inspect.IsNan()) { - if (nan_symbol_ == NULL) return false; + if (nan_symbol_ == DOUBLE_CONVERSION_NULLPTR) return false; result_builder->AddString(nan_symbol_); return true; } @@ -79,7 +79,14 @@ void DoubleToStringConverter::CreateExponentialRepresentation( StringBuilder* result_builder) const { DOUBLE_CONVERSION_ASSERT(length != 0); result_builder->AddCharacter(decimal_digits[0]); - if (length != 1) { + if (length == 1) { + if ((flags_ & EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL) != 0) { + result_builder->AddCharacter('.'); + if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL) != 0) { + result_builder->AddCharacter('0'); + } + } + } else { result_builder->AddCharacter('.'); result_builder->AddSubstring(&decimal_digits[1], length-1); } @@ -92,19 +99,19 @@ void DoubleToStringConverter::CreateExponentialRepresentation( result_builder->AddCharacter('+'); } } - if (exponent == 0) { - result_builder->AddCharacter('0'); - return; - } DOUBLE_CONVERSION_ASSERT(exponent < 1e4); // Changing this constant requires updating the comment of DoubleToStringConverter constructor const int kMaxExponentLength = 5; char buffer[kMaxExponentLength + 1]; buffer[kMaxExponentLength] = '\0'; int first_char_pos = kMaxExponentLength; - while (exponent > 0) { - buffer[--first_char_pos] = '0' + (exponent % 10); - exponent /= 10; + if (exponent == 0) { + buffer[--first_char_pos] = '0'; + } else { + while (exponent > 0) { + buffer[--first_char_pos] = '0' + (exponent % 10); + exponent /= 10; + } } // Add prefix '0' to make exponent width >= min(min_exponent_with_, kMaxExponentLength) // For example: convert 1e+9 -> 1e+09, if min_exponent_with_ is set to 2 @@ -327,9 +334,21 @@ bool DoubleToStringConverter::ToPrecision(double value, int exponent = decimal_point - 1; int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; - if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || + bool as_exponential = + (-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || (decimal_point - precision + extra_zero > - max_trailing_padding_zeroes_in_precision_mode_)) { + max_trailing_padding_zeroes_in_precision_mode_); + if ((flags_ & NO_TRAILING_ZERO) != 0) { + // Truncate trailing zeros that occur after the decimal point (if exponential, + // that is everything after the first digit). + int stop = as_exponential ? 1 : std::max(1, decimal_point); + while (decimal_rep_length > stop && decimal_rep[decimal_rep_length - 1] == '0') { + --decimal_rep_length; + } + // Clamp precision to avoid the code below re-adding the zeros. + precision = std::min(precision, decimal_rep_length); + } + if (as_exponential) { // Fill buffer to contain 'precision' digits. // Usually the buffer is already at the correct length, but 'DoubleToAscii' // is allowed to return less characters. diff --git a/Siv3D/src/ThirdParty/double-conversion/double-to-string.h b/Siv3D/src/ThirdParty/double-conversion/double-to-string.h index a44fa3c7e9..abe60e8810 100644 --- a/Siv3D/src/ThirdParty/double-conversion/double-to-string.h +++ b/Siv3D/src/ThirdParty/double-conversion/double-to-string.h @@ -38,7 +38,7 @@ class DoubleToStringConverter { // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the // function returns false. static const int kMaxFixedDigitsBeforePoint = 60; - static const int kMaxFixedDigitsAfterPoint = 60; + static const int kMaxFixedDigitsAfterPoint = 100; // When calling ToExponential with a requested_digits // parameter > kMaxExponentialDigits then the function returns false. @@ -50,12 +50,37 @@ class DoubleToStringConverter { static const int kMinPrecisionDigits = 1; static const int kMaxPrecisionDigits = 120; + // The maximal number of digits that are needed to emit a double in base 10. + // A higher precision can be achieved by using more digits, but the shortest + // accurate representation of any double will never use more digits than + // kBase10MaximalLength. + // Note that DoubleToAscii null-terminates its input. So the given buffer + // should be at least kBase10MaximalLength + 1 characters long. + static const int kBase10MaximalLength = 17; + + // The maximal number of digits that are needed to emit a single in base 10. + // A higher precision can be achieved by using more digits, but the shortest + // accurate representation of any single will never use more digits than + // kBase10MaximalLengthSingle. + static const int kBase10MaximalLengthSingle = 9; + + // The length of the longest string that 'ToShortest' can produce when the + // converter is instantiated with EcmaScript defaults (see + // 'EcmaScriptConverter') + // This value does not include the trailing '\0' character. + // This amount of characters is needed for negative values that hit the + // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333" + static const int kMaxCharsEcmaScriptShortest = 25; + enum Flags { NO_FLAGS = 0, EMIT_POSITIVE_EXPONENT_SIGN = 1, EMIT_TRAILING_DECIMAL_POINT = 2, EMIT_TRAILING_ZERO_AFTER_POINT = 4, - UNIQUE_ZERO = 8 + UNIQUE_ZERO = 8, + NO_TRAILING_ZERO = 16, + EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL = 32, + EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL = 64 }; // Flags should be a bit-or combination of the possible Flags-enum. @@ -67,9 +92,20 @@ class DoubleToStringConverter { // Example: 2345.0 is converted to "2345.". // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point // emits a trailing '0'-character. This flag requires the - // EXMIT_TRAILING_DECIMAL_POINT flag. + // EMIT_TRAILING_DECIMAL_POINT flag. // Example: 2345.0 is converted to "2345.0". // - UNIQUE_ZERO: "-0.0" is converted to "0.0". + // - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion + // of the result in precision mode. Matches printf's %g. + // When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is + // preserved. + // - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has + // exactly one significant digit and is converted into exponent form then a + // trailing decimal point is appended to the significand in shortest mode + // or in precision mode with one requested digit. + // - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing + // decimal point emits a trailing '0'-character. This flag requires the + // EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag. // // Infinity symbol and nan_symbol provide the string representation for these // special values. If the string is NULL and the special value is encountered @@ -96,7 +132,7 @@ class DoubleToStringConverter { // Example with max_leading_padding_zeroes_in_precision_mode = 6. // ToPrecision(0.0000012345, 2) -> "0.0000012" // ToPrecision(0.00000012345, 2) -> "1.2e-7" - // Similarily the converter may add up to + // Similarly the converter may add up to // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid // returning an exponential representation. A zero added by the // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. @@ -105,6 +141,22 @@ class DoubleToStringConverter { // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. // + // When converting numbers with exactly one significant digit to exponent + // form in shortest mode or in precision mode with one requested digit, the + // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have + // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to + // append a decimal point in this case and the + // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a + // '0'-character in this case. + // Example with decimal_in_shortest_low = 0: + // ToShortest(0.0009) -> "9e-4" + // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated. + // ToShortest(0.0009) -> "9.e-4" + // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated. + // ToShortest(0.0009) -> "9.0e-4" + // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and + // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated. + // // The min_exponent_width is used for exponential representations. // The converter adds leading '0's to the exponent until the exponent // is at least min_exponent_width digits long. @@ -137,6 +189,14 @@ class DoubleToStringConverter { } // Returns a converter following the EcmaScript specification. + // + // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN. + // Special values: "Infinity" and "NaN". + // Lower case 'e' for exponential values. + // decimal_in_shortest_low: -6 + // decimal_in_shortest_high: 21 + // max_leading_padding_zeroes_in_precision_mode: 6 + // max_trailing_padding_zeroes_in_precision_mode: 0 static const DoubleToStringConverter& EcmaScriptConverter(); // Computes the shortest string of digits that correctly represent the input @@ -146,7 +206,7 @@ class DoubleToStringConverter { // Example with decimal_in_shortest_low = -6, // decimal_in_shortest_high = 21, // EMIT_POSITIVE_EXPONENT_SIGN activated, and - // EMIT_TRAILING_DECIMAL_POINT deactived: + // EMIT_TRAILING_DECIMAL_POINT deactivated: // ToShortest(0.000001) -> "0.000001" // ToShortest(0.0000001) -> "1e-7" // ToShortest(111111111111111111111.0) -> "111111111111111110000" @@ -162,6 +222,21 @@ class DoubleToStringConverter { // Returns true if the conversion succeeds. The conversion always succeeds // except when the input value is special and no infinity_symbol or // nan_symbol has been given to the constructor. + // + // The length of the longest result is the maximum of the length of the + // following string representations (each with possible examples): + // - NaN and negative infinity: "NaN", "-Infinity", "-inf". + // - -10^(decimal_in_shortest_high - 1): + // "-100000000000000000000", "-1000000000000000.0" + // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally, + // this string is 3 + kBase10MaximalLength - decimal_in_shortest_low. + // (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low, + // and the significant digits). + // "-0.0000033333333333333333", "-0.0012345678901234567" + // - the longest exponential representation. (A negative number with + // kBase10MaximalLength significant digits). + // "-1.7976931348623157e+308", "-1.7976931348623157E308" + // In addition, the buffer must be able to hold the trailing '\0' character. bool ToShortest(double value, StringBuilder* result_builder) const { return ToShortestIeeeNumber(value, result_builder, SHORTEST); } @@ -202,9 +277,11 @@ class DoubleToStringConverter { // been provided to the constructor, // - 'value' > 10^kMaxFixedDigitsBeforePoint, or // - 'requested_digits' > kMaxFixedDigitsAfterPoint. - // The last two conditions imply that the result will never contain more than - // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters + // The last two conditions imply that the result for non-special values never + // contains more than + // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters // (one additional character for the sign, and one for the decimal point). + // In addition, the buffer must be able to hold the trailing '\0' character. bool ToFixed(double value, int requested_digits, StringBuilder* result_builder) const; @@ -233,14 +310,17 @@ class DoubleToStringConverter { // - the input value is special and no infinity_symbol or nan_symbol has // been provided to the constructor, // - 'requested_digits' > kMaxExponentialDigits. - // The last condition implies that the result will never contain more than + // + // The last condition implies that the result never contains more than // kMaxExponentialDigits + 8 characters (the sign, the digit before the // decimal point, the decimal point, the exponent character, the // exponent's sign, and at most 3 exponent digits). + // In addition, the buffer must be able to hold the trailing '\0' character. bool ToExponential(double value, int requested_digits, StringBuilder* result_builder) const; + // Computes 'precision' leading digits of the given 'value' and returns them // either in exponential or decimal format, depending on // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the @@ -250,7 +330,7 @@ class DoubleToStringConverter { // Example with max_leading_padding_zeroes_in_precision_mode = 6. // ToPrecision(0.0000012345, 2) -> "0.0000012" // ToPrecision(0.00000012345, 2) -> "1.2e-7" - // Similarily the converter may add up to + // Similarly the converter may add up to // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid // returning an exponential representation. A zero added by the // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. @@ -272,9 +352,11 @@ class DoubleToStringConverter { // been provided to the constructor, // - precision < kMinPericisionDigits // - precision > kMaxPrecisionDigits - // The last condition implies that the result will never contain more than + // + // The last condition implies that the result never contains more than // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the // exponent character, the exponent's sign, and at most 3 exponent digits). + // In addition, the buffer must be able to hold the trailing '\0' character. bool ToPrecision(double value, int precision, StringBuilder* result_builder) const; @@ -294,14 +376,6 @@ class DoubleToStringConverter { PRECISION }; - // The maximal number of digits that are needed to emit a double in base 10. - // A higher precision can be achieved by using more digits, but the shortest - // accurate representation of any double will never use more digits than - // kBase10MaximalLength. - // Note that DoubleToAscii null-terminates its input. So the given buffer - // should be at least kBase10MaximalLength + 1 characters long. - static const int kBase10MaximalLength = 17; - // Converts the given double 'v' to digit characters. 'v' must not be NaN, // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also // applies to 'v' after it has been casted to a single-precision float. That diff --git a/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc index f470286437..d7a23984df 100644 --- a/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc +++ b/Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc @@ -565,7 +565,7 @@ static bool Grisu3(double v, // the difference between w and boundary_minus/plus (a power of 2) and to // compute scaled_boundary_minus/plus by subtracting/adding from // scaled_w. However the code becomes much less readable and the speed - // enhancements are not terriffic. + // enhancements are not terrific. DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); @@ -573,7 +573,7 @@ static bool Grisu3(double v, // v == (double) (scaled_w * 10^-mk). // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an // integer than it will be updated. For instance if scaled_w == 1.23 then - // the buffer will be filled with "123" und the decimal_exponent will be + // the buffer will be filled with "123" and the decimal_exponent will be // decreased by 2. int kappa; bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, diff --git a/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc b/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc index ab6ef10eba..e739b19804 100644 --- a/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc +++ b/Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc @@ -395,8 +395,8 @@ bool FastFixedDtoa(double v, TrimZeros(buffer, length, decimal_point); buffer[*length] = '\0'; if ((*length) == 0) { - // The string is empty and the decimal_point thus has no importance. Mimick - // Gay's dtoa and and set it to -fractional_count. + // The string is empty and the decimal_point thus has no importance. Mimic + // Gay's dtoa and set it to -fractional_count. *decimal_point = -fractional_count; } return true; diff --git a/Siv3D/src/ThirdParty/double-conversion/ieee.h b/Siv3D/src/ThirdParty/double-conversion/ieee.h index 3c2a5979ff..9203f4d558 100644 --- a/Siv3D/src/ThirdParty/double-conversion/ieee.h +++ b/Siv3D/src/ThirdParty/double-conversion/ieee.h @@ -150,11 +150,19 @@ class Double { } bool IsQuietNan() const { +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + return IsNan() && ((AsUint64() & kQuietNanBit) == 0); +#else return IsNan() && ((AsUint64() & kQuietNanBit) != 0); +#endif } bool IsSignalingNan() const { +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + return IsNan() && ((AsUint64() & kQuietNanBit) != 0); +#else return IsNan() && ((AsUint64() & kQuietNanBit) == 0); +#endif } @@ -236,7 +244,12 @@ class Double { private: static const int kDenormalExponent = -kExponentBias + 1; static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF7FFFF, FFFFFFFF); +#else static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000); +#endif + const uint64_t d64_; @@ -336,11 +349,19 @@ class Single { } bool IsQuietNan() const { +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + return IsNan() && ((AsUint32() & kQuietNanBit) == 0); +#else return IsNan() && ((AsUint32() & kQuietNanBit) != 0); +#endif } bool IsSignalingNan() const { +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + return IsNan() && ((AsUint32() & kQuietNanBit) != 0); +#else return IsNan() && ((AsUint32() & kQuietNanBit) == 0); +#endif } @@ -410,7 +431,11 @@ class Single { static const int kDenormalExponent = -kExponentBias + 1; static const int kMaxExponent = 0xFF - kExponentBias; static const uint32_t kInfinity = 0x7F800000; +#if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__) + static const uint32_t kNaN = 0x7FBFFFFF; +#else static const uint32_t kNaN = 0x7FC00000; +#endif const uint32_t d32_; diff --git a/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc b/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc deleted file mode 100644 index b95180600d..0000000000 --- a/Siv3D/src/ThirdParty/double-conversion/string-to-double.cc +++ /dev/null @@ -1,779 +0,0 @@ -// Copyright 2010 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include -#include -#include - -#include "string-to-double.h" - -#include "ieee.h" -#include "strtod.h" -#include "utils.h" - -namespace double_conversion { - -namespace { - -inline char ToLower(char ch) { - static const std::ctype& cType = - std::use_facet >(std::locale::classic()); - return cType.tolower(ch); -} - -inline char Pass(char ch) { - return ch; -} - -template -static inline bool ConsumeSubStringImpl(Iterator* current, - Iterator end, - const char* substring, - Converter converter) { - DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring); - for (substring++; *substring != '\0'; substring++) { - ++*current; - if (*current == end || converter(**current) != *substring) { - return false; - } - } - ++*current; - return true; -} - -// Consumes the given substring from the iterator. -// Returns false, if the substring does not match. -template -static bool ConsumeSubString(Iterator* current, - Iterator end, - const char* substring, - bool allow_case_insensitivity) { - if (allow_case_insensitivity) { - return ConsumeSubStringImpl(current, end, substring, ToLower); - } else { - return ConsumeSubStringImpl(current, end, substring, Pass); - } -} - -// Consumes first character of the str is equal to ch -inline bool ConsumeFirstCharacter(char ch, - const char* str, - bool case_insensitivity) { - return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0]; -} -} // namespace - -// Maximum number of significant digits in decimal representation. -// The longest possible double in decimal representation is -// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 -// (768 digits). If we parse a number whose first digits are equal to a -// mean of 2 adjacent doubles (that could have up to 769 digits) the result -// must be rounded to the bigger one unless the tail consists of zeros, so -// we don't need to preserve all the digits. -const int kMaxSignificantDigits = 772; - - -static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 }; -static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7); - - -static const uc16 kWhitespaceTable16[] = { - 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195, - 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279 -}; -static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16); - - -static bool isWhitespace(int x) { - if (x < 128) { - for (int i = 0; i < kWhitespaceTable7Length; i++) { - if (kWhitespaceTable7[i] == x) return true; - } - } else { - for (int i = 0; i < kWhitespaceTable16Length; i++) { - if (kWhitespaceTable16[i] == x) return true; - } - } - return false; -} - - -// Returns true if a nonspace found and false if the end has reached. -template -static inline bool AdvanceToNonspace(Iterator* current, Iterator end) { - while (*current != end) { - if (!isWhitespace(**current)) return true; - ++*current; - } - return false; -} - - -static bool isDigit(int x, int radix) { - return (x >= '0' && x <= '9' && x < '0' + radix) - || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) - || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); -} - - -static double SignedZero(bool sign) { - return sign ? -0.0 : 0.0; -} - - -// Returns true if 'c' is a decimal digit that is valid for the given radix. -// -// The function is small and could be inlined, but VS2012 emitted a warning -// because it constant-propagated the radix and concluded that the last -// condition was always true. By moving it into a separate function the -// compiler wouldn't warn anymore. -#ifdef _MSC_VER -#pragma optimize("",off) -static bool IsDecimalDigitForRadix(int c, int radix) { - return '0' <= c && c <= '9' && (c - '0') < radix; -} -#pragma optimize("",on) -#else -static bool inline IsDecimalDigitForRadix(int c, int radix) { - return '0' <= c && c <= '9' && (c - '0') < radix; -} -#endif -// Returns true if 'c' is a character digit that is valid for the given radix. -// The 'a_character' should be 'a' or 'A'. -// -// The function is small and could be inlined, but VS2012 emitted a warning -// because it constant-propagated the radix and concluded that the first -// condition was always false. By moving it into a separate function the -// compiler wouldn't warn anymore. -static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { - return radix > 10 && c >= a_character && c < a_character + radix - 10; -} - -// Returns true, when the iterator is equal to end. -template -static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) { - if (separator == StringToDoubleConverter::kNoSeparator) { - ++(*it); - return *it == end; - } - if (!isDigit(**it, base)) { - ++(*it); - return *it == end; - } - ++(*it); - if (*it == end) return true; - if (*it + 1 == end) return false; - if (**it == separator && isDigit(*(*it + 1), base)) { - ++(*it); - } - return *it == end; -} - -// Checks whether the string in the range start-end is a hex-float string. -// This function assumes that the leading '0x'/'0X' is already consumed. -// -// Hex float strings are of one of the following forms: -// - hex_digits+ 'p' ('+'|'-')? exponent_digits+ -// - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+ -// - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+ -template -static bool IsHexFloatString(Iterator start, - Iterator end, - uc16 separator, - bool allow_trailing_junk) { - DOUBLE_CONVERSION_ASSERT(start != end); - - Iterator current = start; - - bool saw_digit = false; - while (isDigit(*current, 16)) { - saw_digit = true; - if (Advance(¤t, separator, 16, end)) return false; - } - if (*current == '.') { - if (Advance(¤t, separator, 16, end)) return false; - while (isDigit(*current, 16)) { - saw_digit = true; - if (Advance(¤t, separator, 16, end)) return false; - } - } - if (!saw_digit) return false; - if (*current != 'p' && *current != 'P') return false; - if (Advance(¤t, separator, 16, end)) return false; - if (*current == '+' || *current == '-') { - if (Advance(¤t, separator, 16, end)) return false; - } - if (!isDigit(*current, 10)) return false; - if (Advance(¤t, separator, 16, end)) return true; - while (isDigit(*current, 10)) { - if (Advance(¤t, separator, 16, end)) return true; - } - return allow_trailing_junk || !AdvanceToNonspace(¤t, end); -} - - -// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. -// -// If parse_as_hex_float is true, then the string must be a valid -// hex-float. -template -static double RadixStringToIeee(Iterator* current, - Iterator end, - bool sign, - uc16 separator, - bool parse_as_hex_float, - bool allow_trailing_junk, - double junk_string_value, - bool read_as_double, - bool* result_is_junk) { - DOUBLE_CONVERSION_ASSERT(*current != end); - DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float || - IsHexFloatString(*current, end, separator, allow_trailing_junk)); - - const int kDoubleSize = Double::kSignificandSize; - const int kSingleSize = Single::kSignificandSize; - const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; - - *result_is_junk = true; - - int64_t number = 0; - int exponent = 0; - const int radix = (1 << radix_log_2); - // Whether we have encountered a '.' and are parsing the decimal digits. - // Only relevant if parse_as_hex_float is true. - bool post_decimal = false; - - // Skip leading 0s. - while (**current == '0') { - if (Advance(current, separator, radix, end)) { - *result_is_junk = false; - return SignedZero(sign); - } - } - - while (true) { - int digit; - if (IsDecimalDigitForRadix(**current, radix)) { - digit = static_cast(**current) - '0'; - if (post_decimal) exponent -= radix_log_2; - } else if (IsCharacterDigitForRadix(**current, radix, 'a')) { - digit = static_cast(**current) - 'a' + 10; - if (post_decimal) exponent -= radix_log_2; - } else if (IsCharacterDigitForRadix(**current, radix, 'A')) { - digit = static_cast(**current) - 'A' + 10; - if (post_decimal) exponent -= radix_log_2; - } else if (parse_as_hex_float && **current == '.') { - post_decimal = true; - Advance(current, separator, radix, end); - DOUBLE_CONVERSION_ASSERT(*current != end); - continue; - } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) { - break; - } else { - if (allow_trailing_junk || !AdvanceToNonspace(current, end)) { - break; - } else { - return junk_string_value; - } - } - - number = number * radix + digit; - int overflow = static_cast(number >> kSignificandSize); - if (overflow != 0) { - // Overflow occurred. Need to determine which direction to round the - // result. - int overflow_bits_count = 1; - while (overflow > 1) { - overflow_bits_count++; - overflow >>= 1; - } - - int dropped_bits_mask = ((1 << overflow_bits_count) - 1); - int dropped_bits = static_cast(number) & dropped_bits_mask; - number >>= overflow_bits_count; - exponent += overflow_bits_count; - - bool zero_tail = true; - for (;;) { - if (Advance(current, separator, radix, end)) break; - if (parse_as_hex_float && **current == '.') { - // Just run over the '.'. We are just trying to see whether there is - // a non-zero digit somewhere. - Advance(current, separator, radix, end); - DOUBLE_CONVERSION_ASSERT(*current != end); - post_decimal = true; - } - if (!isDigit(**current, radix)) break; - zero_tail = zero_tail && **current == '0'; - if (!post_decimal) exponent += radix_log_2; - } - - if (!parse_as_hex_float && - !allow_trailing_junk && - AdvanceToNonspace(current, end)) { - return junk_string_value; - } - - int middle_value = (1 << (overflow_bits_count - 1)); - if (dropped_bits > middle_value) { - number++; // Rounding up. - } else if (dropped_bits == middle_value) { - // Rounding to even to consistency with decimals: half-way case rounds - // up if significant part is odd and down otherwise. - if ((number & 1) != 0 || !zero_tail) { - number++; // Rounding up. - } - } - - // Rounding up may cause overflow. - if ((number & ((int64_t)1 << kSignificandSize)) != 0) { - exponent++; - number >>= 1; - } - break; - } - if (Advance(current, separator, radix, end)) break; - } - - DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize)); - DOUBLE_CONVERSION_ASSERT(static_cast(static_cast(number)) == number); - - *result_is_junk = false; - - if (parse_as_hex_float) { - DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P'); - Advance(current, separator, radix, end); - DOUBLE_CONVERSION_ASSERT(*current != end); - bool is_negative = false; - if (**current == '+') { - Advance(current, separator, radix, end); - DOUBLE_CONVERSION_ASSERT(*current != end); - } else if (**current == '-') { - is_negative = true; - Advance(current, separator, radix, end); - DOUBLE_CONVERSION_ASSERT(*current != end); - } - int written_exponent = 0; - while (IsDecimalDigitForRadix(**current, 10)) { - // No need to read exponents if they are too big. That could potentially overflow - // the `written_exponent` variable. - if (abs(written_exponent) <= 100 * Double::kMaxExponent) { - written_exponent = 10 * written_exponent + **current - '0'; - } - if (Advance(current, separator, radix, end)) break; - } - if (is_negative) written_exponent = -written_exponent; - exponent += written_exponent; - } - - if (exponent == 0 || number == 0) { - if (sign) { - if (number == 0) return -0.0; - number = -number; - } - return static_cast(number); - } - - DOUBLE_CONVERSION_ASSERT(number != 0); - double result = Double(DiyFp(number, exponent)).value(); - return sign ? -result : result; -} - -template -double StringToDoubleConverter::StringToIeee( - Iterator input, - int length, - bool read_as_double, - int* processed_characters_count) const { - Iterator current = input; - Iterator end = input + length; - - *processed_characters_count = 0; - - const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; - const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; - const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; - const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; - const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0; - - // To make sure that iterator dereferencing is valid the following - // convention is used: - // 1. Each '++current' statement is followed by check for equality to 'end'. - // 2. If AdvanceToNonspace returned false then current == end. - // 3. If 'current' becomes equal to 'end' the function returns or goes to - // 'parsing_done'. - // 4. 'current' is not dereferenced after the 'parsing_done' label. - // 5. Code before 'parsing_done' may rely on 'current != end'. - if (current == end) return empty_string_value_; - - if (allow_leading_spaces || allow_trailing_spaces) { - if (!AdvanceToNonspace(¤t, end)) { - *processed_characters_count = static_cast(current - input); - return empty_string_value_; - } - if (!allow_leading_spaces && (input != current)) { - // No leading spaces allowed, but AdvanceToNonspace moved forward. - return junk_string_value_; - } - } - - // Exponent will be adjusted if insignificant digits of the integer part - // or insignificant leading zeros of the fractional part are dropped. - int exponent = 0; - int significant_digits = 0; - int insignificant_digits = 0; - bool nonzero_digit_dropped = false; - - bool sign = false; - - if (*current == '+' || *current == '-') { - sign = (*current == '-'); - ++current; - Iterator next_non_space = current; - // Skip following spaces (if allowed). - if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; - if (!allow_spaces_after_sign && (current != next_non_space)) { - return junk_string_value_; - } - current = next_non_space; - } - - if (infinity_symbol_ != NULL) { - if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) { - if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensitivity)) { - return junk_string_value_; - } - - if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { - return junk_string_value_; - } - if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { - return junk_string_value_; - } - - *processed_characters_count = static_cast(current - input); - return sign ? -Double::Infinity() : Double::Infinity(); - } - } - - if (nan_symbol_ != NULL) { - if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) { - if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensitivity)) { - return junk_string_value_; - } - - if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { - return junk_string_value_; - } - if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { - return junk_string_value_; - } - - *processed_characters_count = static_cast(current - input); - return sign ? -Double::NaN() : Double::NaN(); - } - } - - bool leading_zero = false; - if (*current == '0') { - if (Advance(¤t, separator_, 10, end)) { - *processed_characters_count = static_cast(current - input); - return SignedZero(sign); - } - - leading_zero = true; - - // It could be hexadecimal value. - if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) && - (*current == 'x' || *current == 'X')) { - ++current; - - if (current == end) return junk_string_value_; // "0x" - - bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) && - IsHexFloatString(current, end, separator_, allow_trailing_junk); - - if (!parse_as_hex_float && !isDigit(*current, 16)) { - return junk_string_value_; - } - - bool result_is_junk; - double result = RadixStringToIeee<4>(¤t, - end, - sign, - separator_, - parse_as_hex_float, - allow_trailing_junk, - junk_string_value_, - read_as_double, - &result_is_junk); - if (!result_is_junk) { - if (allow_trailing_spaces) AdvanceToNonspace(¤t, end); - *processed_characters_count = static_cast(current - input); - } - return result; - } - - // Ignore leading zeros in the integer part. - while (*current == '0') { - if (Advance(¤t, separator_, 10, end)) { - *processed_characters_count = static_cast(current - input); - return SignedZero(sign); - } - } - } - - bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; - - // The longest form of simplified number is: "-.1eXXX\0". - const int kBufferSize = kMaxSignificantDigits + 10; - DOUBLE_CONVERSION_STACK_UNINITIALIZED char - buffer[kBufferSize]; // NOLINT: size is known at compile time. - int buffer_pos = 0; - - // Copy significant digits of the integer part (if any) to the buffer. - while (*current >= '0' && *current <= '9') { - if (significant_digits < kMaxSignificantDigits) { - DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos++] = static_cast(*current); - significant_digits++; - // Will later check if it's an octal in the buffer. - } else { - insignificant_digits++; // Move the digit into the exponential part. - nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; - } - octal = octal && *current < '8'; - if (Advance(¤t, separator_, 10, end)) goto parsing_done; - } - - if (significant_digits == 0) { - octal = false; - } - - if (*current == '.') { - if (octal && !allow_trailing_junk) return junk_string_value_; - if (octal) goto parsing_done; - - if (Advance(¤t, separator_, 10, end)) { - if (significant_digits == 0 && !leading_zero) { - return junk_string_value_; - } else { - goto parsing_done; - } - } - - if (significant_digits == 0) { - // octal = false; - // Integer part consists of 0 or is absent. Significant digits start after - // leading zeros (if any). - while (*current == '0') { - if (Advance(¤t, separator_, 10, end)) { - *processed_characters_count = static_cast(current - input); - return SignedZero(sign); - } - exponent--; // Move this 0 into the exponent. - } - } - - // There is a fractional part. - // We don't emit a '.', but adjust the exponent instead. - while (*current >= '0' && *current <= '9') { - if (significant_digits < kMaxSignificantDigits) { - DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos++] = static_cast(*current); - significant_digits++; - exponent--; - } else { - // Ignore insignificant digits in the fractional part. - nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; - } - if (Advance(¤t, separator_, 10, end)) goto parsing_done; - } - } - - if (!leading_zero && exponent == 0 && significant_digits == 0) { - // If leading_zeros is true then the string contains zeros. - // If exponent < 0 then string was [+-]\.0*... - // If significant_digits != 0 the string is not equal to 0. - // Otherwise there are no digits in the string. - return junk_string_value_; - } - - // Parse exponential part. - if (*current == 'e' || *current == 'E') { - if (octal && !allow_trailing_junk) return junk_string_value_; - if (octal) goto parsing_done; - Iterator junk_begin = current; - ++current; - if (current == end) { - if (allow_trailing_junk) { - current = junk_begin; - goto parsing_done; - } else { - return junk_string_value_; - } - } - char exponen_sign = '+'; - if (*current == '+' || *current == '-') { - exponen_sign = static_cast(*current); - ++current; - if (current == end) { - if (allow_trailing_junk) { - current = junk_begin; - goto parsing_done; - } else { - return junk_string_value_; - } - } - } - - if (current == end || *current < '0' || *current > '9') { - if (allow_trailing_junk) { - current = junk_begin; - goto parsing_done; - } else { - return junk_string_value_; - } - } - - const int max_exponent = INT_MAX / 2; - DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); - int num = 0; - do { - // Check overflow. - int digit = *current - '0'; - if (num >= max_exponent / 10 - && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { - num = max_exponent; - } else { - num = num * 10 + digit; - } - ++current; - } while (current != end && *current >= '0' && *current <= '9'); - - exponent += (exponen_sign == '-' ? -num : num); - } - - if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { - return junk_string_value_; - } - if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { - return junk_string_value_; - } - if (allow_trailing_spaces) { - AdvanceToNonspace(¤t, end); - } - - parsing_done: - exponent += insignificant_digits; - - if (octal) { - double result; - bool result_is_junk; - char* start = buffer; - result = RadixStringToIeee<3>(&start, - buffer + buffer_pos, - sign, - separator_, - false, // Don't parse as hex_float. - allow_trailing_junk, - junk_string_value_, - read_as_double, - &result_is_junk); - DOUBLE_CONVERSION_ASSERT(!result_is_junk); - *processed_characters_count = static_cast(current - input); - return result; - } - - if (nonzero_digit_dropped) { - buffer[buffer_pos++] = '1'; - exponent--; - } - - DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos] = '\0'; - - double converted; - if (read_as_double) { - converted = Strtod(Vector(buffer, buffer_pos), exponent); - } else { - converted = Strtof(Vector(buffer, buffer_pos), exponent); - } - *processed_characters_count = static_cast(current - input); - return sign? -converted: converted; -} - - -double StringToDoubleConverter::StringToDouble( - const char* buffer, - int length, - int* processed_characters_count) const { - return StringToIeee(buffer, length, true, processed_characters_count); -} - - -double StringToDoubleConverter::StringToDouble( - const uc16* buffer, - int length, - int* processed_characters_count) const { - return StringToIeee(buffer, length, true, processed_characters_count); -} - - -float StringToDoubleConverter::StringToFloat( - const char* buffer, - int length, - int* processed_characters_count) const { - return static_cast(StringToIeee(buffer, length, false, - processed_characters_count)); -} - - -float StringToDoubleConverter::StringToFloat( - const uc16* buffer, - int length, - int* processed_characters_count) const { - return static_cast(StringToIeee(buffer, length, false, - processed_characters_count)); -} - -//----------------------------------------------- -// -// [Siv3D] -// -double StringToDoubleConverter::Siv3D_StringToIeee(const char32_t* start_pointer, - int length, - bool read_as_double, - int* processed_characters_count) const -{ - return StringToIeee(start_pointer, length, read_as_double, - processed_characters_count); -} -// -//----------------------------------------------- - -} // namespace double_conversion diff --git a/Siv3D/src/ThirdParty/double-conversion/string-to-double.h b/Siv3D/src/ThirdParty/double-conversion/string-to-double.h deleted file mode 100644 index e44d4752f6..0000000000 --- a/Siv3D/src/ThirdParty/double-conversion/string-to-double.h +++ /dev/null @@ -1,237 +0,0 @@ -// Copyright 2012 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#ifndef DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_ -#define DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_ - -#include "utils.h" - -namespace double_conversion { - -class StringToDoubleConverter { - public: - // Enumeration for allowing octals and ignoring junk when converting - // strings to numbers. - enum Flags { - NO_FLAGS = 0, - ALLOW_HEX = 1, - ALLOW_OCTALS = 2, - ALLOW_TRAILING_JUNK = 4, - ALLOW_LEADING_SPACES = 8, - ALLOW_TRAILING_SPACES = 16, - ALLOW_SPACES_AFTER_SIGN = 32, - ALLOW_CASE_INSENSITIVITY = 64, - ALLOW_CASE_INSENSIBILITY = 64, // Deprecated - ALLOW_HEX_FLOATS = 128, - }; - - static const uc16 kNoSeparator = '\0'; - - // Flags should be a bit-or combination of the possible Flags-enum. - // - NO_FLAGS: no special flags. - // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. - // Ex: StringToDouble("0x1234") -> 4660.0 - // In StringToDouble("0x1234.56") the characters ".56" are trailing - // junk. The result of the call is hence dependent on - // the ALLOW_TRAILING_JUNK flag and/or the junk value. - // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, - // the string will not be parsed as "0" followed by junk. - // - // - ALLOW_OCTALS: recognizes the prefix "0" for octals: - // If a sequence of octal digits starts with '0', then the number is - // read as octal integer. Octal numbers may only be integers. - // Ex: StringToDouble("01234") -> 668.0 - // StringToDouble("012349") -> 12349.0 // Not a sequence of octal - // // digits. - // In StringToDouble("01234.56") the characters ".56" are trailing - // junk. The result of the call is hence dependent on - // the ALLOW_TRAILING_JUNK flag and/or the junk value. - // In StringToDouble("01234e56") the characters "e56" are trailing - // junk, too. - // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of - // a double literal. - // - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces, - // new-lines, and tabs. - // - ALLOW_TRAILING_SPACES: ignore trailing whitespace. - // - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign. - // Ex: StringToDouble("- 123.2") -> -123.2. - // StringToDouble("+ 123.2") -> 123.2 - // - ALLOW_CASE_INSENSITIVITY: ignore case of characters for special values: - // infinity and nan. - // - ALLOW_HEX_FLOATS: allows hexadecimal float literals. - // This *must* start with "0x" and separate the exponent with "p". - // Examples: 0x1.2p3 == 9.0 - // 0x10.1p0 == 16.0625 - // ALLOW_HEX and ALLOW_HEX_FLOATS are indendent. - // - // empty_string_value is returned when an empty string is given as input. - // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string - // containing only spaces is converted to the 'empty_string_value', too. - // - // junk_string_value is returned when - // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not - // part of a double-literal) is found. - // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a - // double literal. - // - // infinity_symbol and nan_symbol are strings that are used to detect - // inputs that represent infinity and NaN. They can be null, in which case - // they are ignored. - // The conversion routine first reads any possible signs. Then it compares the - // following character of the input-string with the first character of - // the infinity, and nan-symbol. If either matches, the function assumes, that - // a match has been found, and expects the following input characters to match - // the remaining characters of the special-value symbol. - // This means that the following restrictions apply to special-value symbols: - // - they must not start with signs ('+', or '-'), - // - they must not have the same first character. - // - they must not start with digits. - // - // If the separator character is not kNoSeparator, then that specific - // character is ignored when in between two valid digits of the significant. - // It is not allowed to appear in the exponent. - // It is not allowed to lead or trail the number. - // It is not allowed to appear twice next to each other. - // - // Examples: - // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, - // empty_string_value = 0.0, - // junk_string_value = NaN, - // infinity_symbol = "infinity", - // nan_symbol = "nan": - // StringToDouble("0x1234") -> 4660.0. - // StringToDouble("0x1234K") -> 4660.0. - // StringToDouble("") -> 0.0 // empty_string_value. - // StringToDouble(" ") -> NaN // junk_string_value. - // StringToDouble(" 1") -> NaN // junk_string_value. - // StringToDouble("0x") -> NaN // junk_string_value. - // StringToDouble("-123.45") -> -123.45. - // StringToDouble("--123.45") -> NaN // junk_string_value. - // StringToDouble("123e45") -> 123e45. - // StringToDouble("123E45") -> 123e45. - // StringToDouble("123e+45") -> 123e45. - // StringToDouble("123E-45") -> 123e-45. - // StringToDouble("123e") -> 123.0 // trailing junk ignored. - // StringToDouble("123e-") -> 123.0 // trailing junk ignored. - // StringToDouble("+NaN") -> NaN // NaN string literal. - // StringToDouble("-infinity") -> -inf. // infinity literal. - // StringToDouble("Infinity") -> NaN // junk_string_value. - // - // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, - // empty_string_value = 0.0, - // junk_string_value = NaN, - // infinity_symbol = NULL, - // nan_symbol = NULL: - // StringToDouble("0x1234") -> NaN // junk_string_value. - // StringToDouble("01234") -> 668.0. - // StringToDouble("") -> 0.0 // empty_string_value. - // StringToDouble(" ") -> 0.0 // empty_string_value. - // StringToDouble(" 1") -> 1.0 - // StringToDouble("0x") -> NaN // junk_string_value. - // StringToDouble("0123e45") -> NaN // junk_string_value. - // StringToDouble("01239E45") -> 1239e45. - // StringToDouble("-infinity") -> NaN // junk_string_value. - // StringToDouble("NaN") -> NaN // junk_string_value. - // - // flags = NO_FLAGS, - // separator = ' ': - // StringToDouble("1 2 3 4") -> 1234.0 - // StringToDouble("1 2") -> NaN // junk_string_value - // StringToDouble("1 000 000.0") -> 1000000.0 - // StringToDouble("1.000 000") -> 1.0 - // StringToDouble("1.0e1 000") -> NaN // junk_string_value - StringToDoubleConverter(int flags, - double empty_string_value, - double junk_string_value, - const char* infinity_symbol, - const char* nan_symbol, - uc16 separator = kNoSeparator) - : flags_(flags), - empty_string_value_(empty_string_value), - junk_string_value_(junk_string_value), - infinity_symbol_(infinity_symbol), - nan_symbol_(nan_symbol), - separator_(separator) { - } - - // Performs the conversion. - // The output parameter 'processed_characters_count' is set to the number - // of characters that have been processed to read the number. - // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included - // in the 'processed_characters_count'. Trailing junk is never included. - double StringToDouble(const char* buffer, - int length, - int* processed_characters_count) const; - - // Same as StringToDouble above but for 16 bit characters. - double StringToDouble(const uc16* buffer, - int length, - int* processed_characters_count) const; - - // Same as StringToDouble but reads a float. - // Note that this is not equivalent to static_cast(StringToDouble(...)) - // due to potential double-rounding. - float StringToFloat(const char* buffer, - int length, - int* processed_characters_count) const; - - // Same as StringToFloat above but for 16 bit characters. - float StringToFloat(const uc16* buffer, - int length, - int* processed_characters_count) const; - - //----------------------------------------------- - // - // [Siv3D] - // - double Siv3D_StringToIeee(const char32_t* start_pointer, - int length, - bool read_as_double, - int* processed_characters_count) const; - // - //----------------------------------------------- - - private: - const int flags_; - const double empty_string_value_; - const double junk_string_value_; - const char* const infinity_symbol_; - const char* const nan_symbol_; - const uc16 separator_; - - template - double StringToIeee(Iterator start_pointer, - int length, - bool read_as_double, - int* processed_characters_count) const; - - DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); -}; - -} // namespace double_conversion - -#endif // DOUBLE_CONVERSION_STRING_TO_DOUBLE_H_ diff --git a/Siv3D/src/ThirdParty/double-conversion/strtod.cc b/Siv3D/src/ThirdParty/double-conversion/strtod.cc deleted file mode 100644 index 3da7a42a77..0000000000 --- a/Siv3D/src/ThirdParty/double-conversion/strtod.cc +++ /dev/null @@ -1,606 +0,0 @@ -// Copyright 2010 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include -#include - -#include "bignum.h" -#include "cached-powers.h" -#include "ieee.h" -#include "strtod.h" - -namespace double_conversion { - -#if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) -// 2^53 = 9007199254740992. -// Any integer with at most 15 decimal digits will hence fit into a double -// (which has a 53bit significand) without loss of precision. -static const int kMaxExactDoubleIntegerDecimalDigits = 15; -#endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) -// 2^64 = 18446744073709551616 > 10^19 -static const int kMaxUint64DecimalDigits = 19; - -// Max double: 1.7976931348623157 x 10^308 -// Min non-zero double: 4.9406564584124654 x 10^-324 -// Any x >= 10^309 is interpreted as +infinity. -// Any x <= 10^-324 is interpreted as 0. -// Note that 2.5e-324 (despite being smaller than the min double) will be read -// as non-zero (equal to the min non-zero double). -static const int kMaxDecimalPower = 309; -static const int kMinDecimalPower = -324; - -// 2^64 = 18446744073709551616 -static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); - - -#if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) -static const double exact_powers_of_ten[] = { - 1.0, // 10^0 - 10.0, - 100.0, - 1000.0, - 10000.0, - 100000.0, - 1000000.0, - 10000000.0, - 100000000.0, - 1000000000.0, - 10000000000.0, // 10^10 - 100000000000.0, - 1000000000000.0, - 10000000000000.0, - 100000000000000.0, - 1000000000000000.0, - 10000000000000000.0, - 100000000000000000.0, - 1000000000000000000.0, - 10000000000000000000.0, - 100000000000000000000.0, // 10^20 - 1000000000000000000000.0, - // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 - 10000000000000000000000.0 -}; -static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten); -#endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) - -// Maximum number of significant digits in the decimal representation. -// In fact the value is 772 (see conversions.cc), but to give us some margin -// we round up to 780. -static const int kMaxSignificantDecimalDigits = 780; - -static Vector TrimLeadingZeros(Vector buffer) { - for (int i = 0; i < buffer.length(); i++) { - if (buffer[i] != '0') { - return buffer.SubVector(i, buffer.length()); - } - } - return Vector(buffer.start(), 0); -} - - -static Vector TrimTrailingZeros(Vector buffer) { - for (int i = buffer.length() - 1; i >= 0; --i) { - if (buffer[i] != '0') { - return buffer.SubVector(0, i + 1); - } - } - return Vector(buffer.start(), 0); -} - - -static void CutToMaxSignificantDigits(Vector buffer, - int exponent, - char* significant_buffer, - int* significant_exponent) { - for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { - significant_buffer[i] = buffer[i]; - } - // The input buffer has been trimmed. Therefore the last digit must be - // different from '0'. - DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0'); - // Set the last digit to be non-zero. This is sufficient to guarantee - // correct rounding. - significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; - *significant_exponent = - exponent + (buffer.length() - kMaxSignificantDecimalDigits); -} - - -// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. -// If possible the input-buffer is reused, but if the buffer needs to be -// modified (due to cutting), then the input needs to be copied into the -// buffer_copy_space. -static void TrimAndCut(Vector buffer, int exponent, - char* buffer_copy_space, int space_size, - Vector* trimmed, int* updated_exponent) { - Vector left_trimmed = TrimLeadingZeros(buffer); - Vector right_trimmed = TrimTrailingZeros(left_trimmed); - exponent += left_trimmed.length() - right_trimmed.length(); - if (right_trimmed.length() > kMaxSignificantDecimalDigits) { - (void) space_size; // Mark variable as used. - DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits); - CutToMaxSignificantDigits(right_trimmed, exponent, - buffer_copy_space, updated_exponent); - *trimmed = Vector(buffer_copy_space, - kMaxSignificantDecimalDigits); - } else { - *trimmed = right_trimmed; - *updated_exponent = exponent; - } -} - - -// Reads digits from the buffer and converts them to a uint64. -// Reads in as many digits as fit into a uint64. -// When the string starts with "1844674407370955161" no further digit is read. -// Since 2^64 = 18446744073709551616 it would still be possible read another -// digit if it was less or equal than 6, but this would complicate the code. -static uint64_t ReadUint64(Vector buffer, - int* number_of_read_digits) { - uint64_t result = 0; - int i = 0; - while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { - int digit = buffer[i++] - '0'; - DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9); - result = 10 * result + digit; - } - *number_of_read_digits = i; - return result; -} - - -// Reads a DiyFp from the buffer. -// The returned DiyFp is not necessarily normalized. -// If remaining_decimals is zero then the returned DiyFp is accurate. -// Otherwise it has been rounded and has error of at most 1/2 ulp. -static void ReadDiyFp(Vector buffer, - DiyFp* result, - int* remaining_decimals) { - int read_digits; - uint64_t significand = ReadUint64(buffer, &read_digits); - if (buffer.length() == read_digits) { - *result = DiyFp(significand, 0); - *remaining_decimals = 0; - } else { - // Round the significand. - if (buffer[read_digits] >= '5') { - significand++; - } - // Compute the binary exponent. - int exponent = 0; - *result = DiyFp(significand, exponent); - *remaining_decimals = buffer.length() - read_digits; - } -} - - -static bool DoubleStrtod(Vector trimmed, - int exponent, - double* result) { -#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) - // On x86 the floating-point stack can be 64 or 80 bits wide. If it is - // 80 bits wide (as is the case on Linux) then double-rounding occurs and the - // result is not accurate. - // We know that Windows32 uses 64 bits and is therefore accurate. - // Note that the ARM simulator is compiled for 32bits. It therefore exhibits - // the same problem. - return false; -#else - if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { - int read_digits; - // The trimmed input fits into a double. - // If the 10^exponent (resp. 10^-exponent) fits into a double too then we - // can compute the result-double simply by multiplying (resp. dividing) the - // two numbers. - // This is possible because IEEE guarantees that floating-point operations - // return the best possible approximation. - if (exponent < 0 && -exponent < kExactPowersOfTenSize) { - // 10^-exponent fits into a double. - *result = static_cast(ReadUint64(trimmed, &read_digits)); - DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); - *result /= exact_powers_of_ten[-exponent]; - return true; - } - if (0 <= exponent && exponent < kExactPowersOfTenSize) { - // 10^exponent fits into a double. - *result = static_cast(ReadUint64(trimmed, &read_digits)); - DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); - *result *= exact_powers_of_ten[exponent]; - return true; - } - int remaining_digits = - kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); - if ((0 <= exponent) && - (exponent - remaining_digits < kExactPowersOfTenSize)) { - // The trimmed string was short and we can multiply it with - // 10^remaining_digits. As a result the remaining exponent now fits - // into a double too. - *result = static_cast(ReadUint64(trimmed, &read_digits)); - DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); - *result *= exact_powers_of_ten[remaining_digits]; - *result *= exact_powers_of_ten[exponent - remaining_digits]; - return true; - } - } - return false; -#endif -} - - -// Returns 10^exponent as an exact DiyFp. -// The given exponent must be in the range [1; kDecimalExponentDistance[. -static DiyFp AdjustmentPowerOfTen(int exponent) { - DOUBLE_CONVERSION_ASSERT(0 < exponent); - DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); - // Simply hardcode the remaining powers for the given decimal exponent - // distance. - DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); - switch (exponent) { - case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60); - case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57); - case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54); - case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50); - case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47); - case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44); - case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40); - default: - DOUBLE_CONVERSION_UNREACHABLE(); - } -} - - -// If the function returns true then the result is the correct double. -// Otherwise it is either the correct double or the double that is just below -// the correct double. -static bool DiyFpStrtod(Vector buffer, - int exponent, - double* result) { - DiyFp input; - int remaining_decimals; - ReadDiyFp(buffer, &input, &remaining_decimals); - // Since we may have dropped some digits the input is not accurate. - // If remaining_decimals is different than 0 than the error is at most - // .5 ulp (unit in the last place). - // We don't want to deal with fractions and therefore keep a common - // denominator. - const int kDenominatorLog = 3; - const int kDenominator = 1 << kDenominatorLog; - // Move the remaining decimals into the exponent. - exponent += remaining_decimals; - uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); - - int old_e = input.e(); - input.Normalize(); - error <<= old_e - input.e(); - - DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); - if (exponent < PowersOfTenCache::kMinDecimalExponent) { - *result = 0.0; - return true; - } - DiyFp cached_power; - int cached_decimal_exponent; - PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, - &cached_power, - &cached_decimal_exponent); - - if (cached_decimal_exponent != exponent) { - int adjustment_exponent = exponent - cached_decimal_exponent; - DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); - input.Multiply(adjustment_power); - if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { - // The product of input with the adjustment power fits into a 64 bit - // integer. - DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); - } else { - // The adjustment power is exact. There is hence only an error of 0.5. - error += kDenominator / 2; - } - } - - input.Multiply(cached_power); - // The error introduced by a multiplication of a*b equals - // error_a + error_b + error_a*error_b/2^64 + 0.5 - // Substituting a with 'input' and b with 'cached_power' we have - // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), - // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 - int error_b = kDenominator / 2; - int error_ab = (error == 0 ? 0 : 1); // We round up to 1. - int fixed_error = kDenominator / 2; - error += error_b + error_ab + fixed_error; - - old_e = input.e(); - input.Normalize(); - error <<= old_e - input.e(); - - // See if the double's significand changes if we add/subtract the error. - int order_of_magnitude = DiyFp::kSignificandSize + input.e(); - int effective_significand_size = - Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); - int precision_digits_count = - DiyFp::kSignificandSize - effective_significand_size; - if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { - // This can only happen for very small denormals. In this case the - // half-way multiplied by the denominator exceeds the range of an uint64. - // Simply shift everything to the right. - int shift_amount = (precision_digits_count + kDenominatorLog) - - DiyFp::kSignificandSize + 1; - input.set_f(input.f() >> shift_amount); - input.set_e(input.e() + shift_amount); - // We add 1 for the lost precision of error, and kDenominator for - // the lost precision of input.f(). - error = (error >> shift_amount) + 1 + kDenominator; - precision_digits_count -= shift_amount; - } - // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. - DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); - DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64); - uint64_t one64 = 1; - uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; - uint64_t precision_bits = input.f() & precision_bits_mask; - uint64_t half_way = one64 << (precision_digits_count - 1); - precision_bits *= kDenominator; - half_way *= kDenominator; - DiyFp rounded_input(input.f() >> precision_digits_count, - input.e() + precision_digits_count); - if (precision_bits >= half_way + error) { - rounded_input.set_f(rounded_input.f() + 1); - } - // If the last_bits are too close to the half-way case than we are too - // inaccurate and round down. In this case we return false so that we can - // fall back to a more precise algorithm. - - *result = Double(rounded_input).value(); - if (half_way - error < precision_bits && precision_bits < half_way + error) { - // Too imprecise. The caller will have to fall back to a slower version. - // However the returned number is guaranteed to be either the correct - // double, or the next-lower double. - return false; - } else { - return true; - } -} - - -// Returns -// - -1 if buffer*10^exponent < diy_fp. -// - 0 if buffer*10^exponent == diy_fp. -// - +1 if buffer*10^exponent > diy_fp. -// Preconditions: -// buffer.length() + exponent <= kMaxDecimalPower + 1 -// buffer.length() + exponent > kMinDecimalPower -// buffer.length() <= kMaxDecimalSignificantDigits -static int CompareBufferWithDiyFp(Vector buffer, - int exponent, - DiyFp diy_fp) { - DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); - DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower); - DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); - // Make sure that the Bignum will be able to hold all our numbers. - // Our Bignum implementation has a separate field for exponents. Shifts will - // consume at most one bigit (< 64 bits). - // ln(10) == 3.3219... - DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); - Bignum buffer_bignum; - Bignum diy_fp_bignum; - buffer_bignum.AssignDecimalString(buffer); - diy_fp_bignum.AssignUInt64(diy_fp.f()); - if (exponent >= 0) { - buffer_bignum.MultiplyByPowerOfTen(exponent); - } else { - diy_fp_bignum.MultiplyByPowerOfTen(-exponent); - } - if (diy_fp.e() > 0) { - diy_fp_bignum.ShiftLeft(diy_fp.e()); - } else { - buffer_bignum.ShiftLeft(-diy_fp.e()); - } - return Bignum::Compare(buffer_bignum, diy_fp_bignum); -} - - -// Returns true if the guess is the correct double. -// Returns false, when guess is either correct or the next-lower double. -static bool ComputeGuess(Vector trimmed, int exponent, - double* guess) { - if (trimmed.length() == 0) { - *guess = 0.0; - return true; - } - if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { - *guess = Double::Infinity(); - return true; - } - if (exponent + trimmed.length() <= kMinDecimalPower) { - *guess = 0.0; - return true; - } - - if (DoubleStrtod(trimmed, exponent, guess) || - DiyFpStrtod(trimmed, exponent, guess)) { - return true; - } - if (*guess == Double::Infinity()) { - return true; - } - return false; -} - -static bool IsDigit(const char d) { - return ('0' <= d) && (d <= '9'); -} - -static bool IsNonZeroDigit(const char d) { - return ('1' <= d) && (d <= '9'); -} - -static bool AssertTrimmedDigits(const Vector& buffer) { - for(int i = 0; i < buffer.length(); ++i) { - if(!IsDigit(buffer[i])) { - return false; - } - } - return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1])); -} - -double StrtodTrimmed(Vector trimmed, int exponent) { - DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits); - DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed)); - double guess; - const bool is_correct = ComputeGuess(trimmed, exponent, &guess); - if (is_correct) { - return guess; - } - DiyFp upper_boundary = Double(guess).UpperBoundary(); - int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); - if (comparison < 0) { - return guess; - } else if (comparison > 0) { - return Double(guess).NextDouble(); - } else if ((Double(guess).Significand() & 1) == 0) { - // Round towards even. - return guess; - } else { - return Double(guess).NextDouble(); - } -} - -double Strtod(Vector buffer, int exponent) { - char copy_buffer[kMaxSignificantDecimalDigits]; - Vector trimmed; - int updated_exponent; - TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, - &trimmed, &updated_exponent); - return StrtodTrimmed(trimmed, updated_exponent); -} - -static float SanitizedDoubletof(double d) { - DOUBLE_CONVERSION_ASSERT(d >= 0.0); - // ASAN has a sanitize check that disallows casting doubles to floats if - // they are too big. - // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks - // The behavior should be covered by IEEE 754, but some projects use this - // flag, so work around it. - float max_finite = 3.4028234663852885981170418348451692544e+38; - // The half-way point between the max-finite and infinity value. - // Since infinity has an even significand everything equal or greater than - // this value should become infinity. - double half_max_finite_infinity = - 3.40282356779733661637539395458142568448e+38; - if (d >= max_finite) { - if (d >= half_max_finite_infinity) { - return Single::Infinity(); - } else { - return max_finite; - } - } else { - return static_cast(d); - } -} - -float Strtof(Vector buffer, int exponent) { - char copy_buffer[kMaxSignificantDecimalDigits]; - Vector trimmed; - int updated_exponent; - TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, - &trimmed, &updated_exponent); - exponent = updated_exponent; - - double double_guess; - bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); - - float float_guess = SanitizedDoubletof(double_guess); - if (float_guess == double_guess) { - // This shortcut triggers for integer values. - return float_guess; - } - - // We must catch double-rounding. Say the double has been rounded up, and is - // now a boundary of a float, and rounds up again. This is why we have to - // look at previous too. - // Example (in decimal numbers): - // input: 12349 - // high-precision (4 digits): 1235 - // low-precision (3 digits): - // when read from input: 123 - // when rounded from high precision: 124. - // To do this we simply look at the neigbors of the correct result and see - // if they would round to the same float. If the guess is not correct we have - // to look at four values (since two different doubles could be the correct - // double). - - double double_next = Double(double_guess).NextDouble(); - double double_previous = Double(double_guess).PreviousDouble(); - - float f1 = SanitizedDoubletof(double_previous); - float f2 = float_guess; - float f3 = SanitizedDoubletof(double_next); - float f4; - if (is_correct) { - f4 = f3; - } else { - double double_next2 = Double(double_next).NextDouble(); - f4 = SanitizedDoubletof(double_next2); - } - (void) f2; // Mark variable as used. - DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); - - // If the guess doesn't lie near a single-precision boundary we can simply - // return its float-value. - if (f1 == f4) { - return float_guess; - } - - DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || - (f1 == f2 && f2 != f3 && f3 == f4) || - (f1 == f2 && f2 == f3 && f3 != f4)); - - // guess and next are the two possible candidates (in the same way that - // double_guess was the lower candidate for a double-precision guess). - float guess = f1; - float next = f4; - DiyFp upper_boundary; - if (guess == 0.0f) { - float min_float = 1e-45f; - upper_boundary = Double(static_cast(min_float) / 2).AsDiyFp(); - } else { - upper_boundary = Single(guess).UpperBoundary(); - } - int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); - if (comparison < 0) { - return guess; - } else if (comparison > 0) { - return next; - } else if ((Single(guess).Significand() & 1) == 0) { - // Round towards even. - return guess; - } else { - return next; - } -} - -} // namespace double_conversion diff --git a/Siv3D/src/ThirdParty/double-conversion/strtod.h b/Siv3D/src/ThirdParty/double-conversion/strtod.h deleted file mode 100644 index ff0ee47092..0000000000 --- a/Siv3D/src/ThirdParty/double-conversion/strtod.h +++ /dev/null @@ -1,50 +0,0 @@ -// Copyright 2010 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#ifndef DOUBLE_CONVERSION_STRTOD_H_ -#define DOUBLE_CONVERSION_STRTOD_H_ - -#include "utils.h" - -namespace double_conversion { - -// The buffer must only contain digits in the range [0-9]. It must not -// contain a dot or a sign. It must not start with '0', and must not be empty. -double Strtod(Vector buffer, int exponent); - -// The buffer must only contain digits in the range [0-9]. It must not -// contain a dot or a sign. It must not start with '0', and must not be empty. -float Strtof(Vector buffer, int exponent); - -// For special use cases, the heart of the Strtod() function is also available -// separately, it assumes that 'trimmed' is as produced by TrimAndCut(), i.e. -// no leading or trailing zeros, also no lone zero, and not 'too many' digits. -double StrtodTrimmed(Vector trimmed, int exponent); - -} // namespace double_conversion - -#endif // DOUBLE_CONVERSION_STRTOD_H_ diff --git a/Siv3D/src/ThirdParty/double-conversion/utils.h b/Siv3D/src/ThirdParty/double-conversion/utils.h index e011735f7d..4f4dd71bf7 100644 --- a/Siv3D/src/ThirdParty/double-conversion/utils.h +++ b/Siv3D/src/ThirdParty/double-conversion/utils.h @@ -28,17 +28,35 @@ #ifndef DOUBLE_CONVERSION_UTILS_H_ #define DOUBLE_CONVERSION_UTILS_H_ +// Use DOUBLE_CONVERSION_NON_PREFIXED_MACROS to get unprefixed macros as was +// the case in double-conversion releases prior to 3.1.6 + #include #include +// For pre-C++11 compatibility +#if __cplusplus >= 201103L +#define DOUBLE_CONVERSION_NULLPTR nullptr +#else +#define DOUBLE_CONVERSION_NULLPTR NULL +#endif + #include #ifndef DOUBLE_CONVERSION_ASSERT #define DOUBLE_CONVERSION_ASSERT(condition) \ - assert(condition); + assert(condition) +#endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ASSERT) +#define ASSERT DOUBLE_CONVERSION_ASSERT #endif + #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort()) #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNIMPLEMENTED) +#define UNIMPLEMENTED DOUBLE_CONVERSION_UNIMPLEMENTED +#endif + #ifndef DOUBLE_CONVERSION_NO_RETURN #ifdef _MSC_VER #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn) @@ -46,6 +64,10 @@ #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn)) #endif #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(NO_RETURN) +#define NO_RETURN DOUBLE_CONVERSION_NO_RETURN +#endif + #ifndef DOUBLE_CONVERSION_UNREACHABLE #ifdef _MSC_VER void DOUBLE_CONVERSION_NO_RETURN abort_noreturn(); @@ -55,22 +77,37 @@ inline void abort_noreturn() { abort(); } #define DOUBLE_CONVERSION_UNREACHABLE() (abort()) #endif #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNREACHABLE) +#define UNREACHABLE DOUBLE_CONVERSION_UNREACHABLE +#endif + +// Not all compilers support __has_attribute and combining a check for both +// ifdef and __has_attribute on the same preprocessor line isn't portable. +#ifdef __has_attribute +# define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x) +#else +# define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0 +#endif #ifndef DOUBLE_CONVERSION_UNUSED -#ifdef __GNUC__ +#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused) #define DOUBLE_CONVERSION_UNUSED __attribute__((unused)) #else #define DOUBLE_CONVERSION_UNUSED #endif #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNUSED) +#define UNUSED DOUBLE_CONVERSION_UNUSED +#endif -#if defined(__clang__) -# if __has_attribute(uninitialized) +#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized) #define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized)) -# endif #else #define DOUBLE_CONVERSION_STACK_UNINITIALIZED #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(STACK_UNINITIALIZED) +#define STACK_UNINITIALIZED DOUBLE_CONVERSION_STACK_UNINITIALIZED +#endif // Double operations detection based on target architecture. // Linux uses a 80bit wide floating point stack on x86. This induces double @@ -102,7 +139,8 @@ int main(int argc, char** argv) { defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ defined(__hppa__) || defined(__ia64__) || \ defined(__mips__) || \ - defined(__nios2__) || \ + defined(__loongarch__) || \ + defined(__nios2__) || defined(__ghs) || \ defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ @@ -110,7 +148,7 @@ int main(int argc, char** argv) { defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\ defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \ defined(__riscv) || defined(__e2k__) || \ - defined(__or1k__) || defined(__arc__) || \ + defined(__or1k__) || defined(__arc__) || defined(__ARC64__) || \ defined(__microblaze__) || defined(__XTENSA__) || \ defined(__EMSCRIPTEN__) || defined(__wasm32__) #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 @@ -127,6 +165,9 @@ int main(int argc, char** argv) { #else #error Target architecture was not detected as supported by Double-Conversion. #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(CORRECT_DOUBLE_OPERATIONS) +#define CORRECT_DOUBLE_OPERATIONS DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS +#endif #if defined(_WIN32) && !defined(__MINGW32__) @@ -152,7 +193,9 @@ typedef uint16_t uc16; // Usage: instead of writing 0x1234567890123456 // write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456); #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast(a) << 32) + 0x##b##u)) - +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UINT64_2PART_C) +#define UINT64_2PART_C DOUBLE_CONVERSION_UINT64_2PART_C +#endif // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type // size_t which represents the number of elements of the given @@ -163,6 +206,9 @@ typedef uint16_t uc16; ((sizeof(a) / sizeof(*(a))) / \ static_cast(!(sizeof(a) % sizeof(*(a))))) #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ARRAY_SIZE) +#define ARRAY_SIZE DOUBLE_CONVERSION_ARRAY_SIZE +#endif // A macro to disallow the evil copy constructor and operator= functions // This should be used in the private: declarations for a class @@ -171,6 +217,9 @@ typedef uint16_t uc16; TypeName(const TypeName&); \ void operator=(const TypeName&) #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_COPY_AND_ASSIGN) +#define DC_DISALLOW_COPY_AND_ASSIGN DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN +#endif // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. @@ -183,6 +232,9 @@ typedef uint16_t uc16; TypeName(); \ DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) #endif +#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_IMPLICIT_CONSTRUCTORS) +#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS +#endif namespace double_conversion { @@ -196,9 +248,9 @@ inline int StrLength(const char* string) { template class Vector { public: - Vector() : start_(NULL), length_(0) {} + Vector() : start_(DOUBLE_CONVERSION_NULLPTR), length_(0) {} Vector(T* data, int len) : start_(data), length_(len) { - DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL)); + DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != DOUBLE_CONVERSION_NULLPTR)); } // Returns a vector using the same backing storage as this one, @@ -281,7 +333,7 @@ class StringBuilder { void AddSubstring(const char* s, int n) { DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length()); DOUBLE_CONVERSION_ASSERT(static_cast(n) <= strlen(s)); - memmove(&buffer_[position_], s, n); + memmove(&buffer_[position_], s, static_cast(n)); position_ += n; } diff --git a/Siv3D/src/ThirdParty/fast_float/fast_float.h b/Siv3D/src/ThirdParty/fast_float/fast_float.h new file mode 100644 index 0000000000..c41836c758 --- /dev/null +++ b/Siv3D/src/ThirdParty/fast_float/fast_float.h @@ -0,0 +1,3661 @@ +// fast_float by Daniel Lemire +// fast_float by JoĂŁo Paulo Magalhaes +// +// +// with contributions from Eugene Golushkov +// with contributions from Maksim Kita +// with contributions from Marcin Wojdyr +// with contributions from Neal Richardson +// with contributions from Tim Paine +// with contributions from Fabio Pellacini +// with contributions from LĂ©nárd Szolnoki +// with contributions from Jan Pharago +// with contributions from Maya Warrier +// +// +// Licensed under the Apache License, Version 2.0, or the +// MIT License or the Boost License. This file may not be copied, +// modified, or distributed except according to those terms. +// +// MIT License Notice +// +// MIT License +// +// Copyright (c) 2021 The fast_float authors +// +// Permission is hereby granted, free of charge, to any +// person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the +// Software without restriction, including without +// limitation the rights to use, copy, modify, merge, +// publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following +// conditions: +// +// The above copyright notice and this permission notice +// shall be included in all copies or substantial portions +// of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +// DEALINGS IN THE SOFTWARE. +// +// Apache License (Version 2.0) Notice +// +// Copyright 2021 The fast_float authors +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// +// BOOST License Notice +// +// Boost Software License - Version 1.0 - August 17th, 2003 +// +// Permission is hereby granted, free of charge, to any person or organization +// obtaining a copy of the software and accompanying documentation covered by +// this license (the "Software") to use, reproduce, display, distribute, +// execute, and transmit the Software, and to prepare derivative works of the +// Software, and to permit third-parties to whom the Software is furnished to +// do so, all subject to the following: +// +// The copyright notices in the Software and this entire statement, including +// the above license grant, this restriction and the following disclaimer, +// must be included in all copies of the Software, in whole or in part, and +// all derivative works of the Software, unless such copies or derivative +// works are solely in the form of machine-executable object code generated by +// a source language processor. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT +// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE +// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +// DEALINGS IN THE SOFTWARE. +// + +#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H +#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H + +#ifdef __has_include +#if __has_include() +#include +#endif +#endif + +// Testing for https://wg21.link/N3652, adopted in C++14 +#if __cpp_constexpr >= 201304 +#define FASTFLOAT_CONSTEXPR14 constexpr +#else +#define FASTFLOAT_CONSTEXPR14 +#endif + +#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L +#define FASTFLOAT_HAS_BIT_CAST 1 +#else +#define FASTFLOAT_HAS_BIT_CAST 0 +#endif + +#if defined(__cpp_lib_is_constant_evaluated) && __cpp_lib_is_constant_evaluated >= 201811L +#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 +#else +#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 +#endif + +// Testing for relevant C++20 constexpr library features +#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED \ + && FASTFLOAT_HAS_BIT_CAST \ + && __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ +#define FASTFLOAT_CONSTEXPR20 constexpr +#define FASTFLOAT_IS_CONSTEXPR 1 +#else +#define FASTFLOAT_CONSTEXPR20 +#define FASTFLOAT_IS_CONSTEXPR 0 +#endif + +#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H + +#ifndef FASTFLOAT_FLOAT_COMMON_H +#define FASTFLOAT_FLOAT_COMMON_H + +#include +#include +#include +#include +#include +#include + + +namespace fast_float { + +#define FASTFLOAT_JSONFMT (1 << 5) +#define FASTFLOAT_FORTRANFMT (1 << 6) + +enum chars_format { + scientific = 1 << 0, + fixed = 1 << 2, + hex = 1 << 3, + no_infnan = 1 << 4, + // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 + json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, + // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. + json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, + fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, + general = fixed | scientific +}; + +template +struct from_chars_result_t { + UC const* ptr; + std::errc ec; +}; +using from_chars_result = from_chars_result_t; + +template +struct parse_options_t { + constexpr explicit parse_options_t(chars_format fmt = chars_format::general, + UC dot = UC('.')) + : format(fmt), decimal_point(dot) {} + + /** Which number formats are accepted */ + chars_format format; + /** The character used as decimal point */ + UC decimal_point; +}; +using parse_options = parse_options_t; + +} + +#if FASTFLOAT_HAS_BIT_CAST +#include +#endif + +#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \ + || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ + || defined(__MINGW64__) \ + || defined(__s390x__) \ + || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \ + || defined(__loongarch64) ) +#define FASTFLOAT_64BIT 1 +#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \ + || defined(__arm__) || defined(_M_ARM) || defined(__ppc__) \ + || defined(__MINGW32__) || defined(__EMSCRIPTEN__)) +#define FASTFLOAT_32BIT 1 +#else + // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. + // We can never tell the register width, but the SIZE_MAX is a good approximation. + // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability. + #if SIZE_MAX == 0xffff + #error Unknown platform (16-bit, unsupported) + #elif SIZE_MAX == 0xffffffff + #define FASTFLOAT_32BIT 1 + #elif SIZE_MAX == 0xffffffffffffffff + #define FASTFLOAT_64BIT 1 + #else + #error Unknown platform (not 32-bit, not 64-bit?) + #endif +#endif + +#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) +#include +#endif + +#if defined(_MSC_VER) && !defined(__clang__) +#define FASTFLOAT_VISUAL_STUDIO 1 +#endif + +#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ +#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) +#elif defined _WIN32 +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#if defined(__APPLE__) || defined(__FreeBSD__) +#include +#elif defined(sun) || defined(__sun) +#include +#elif defined(__MVS__) +#include +#else +#ifdef __has_include +#if __has_include() +#include +#endif //__has_include() +#endif //__has_include +#endif +# +#ifndef __BYTE_ORDER__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#ifndef __ORDER_LITTLE_ENDIAN__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#define FASTFLOAT_IS_BIG_ENDIAN 1 +#endif +#endif + +#if defined(__SSE2__) || \ + (defined(FASTFLOAT_VISUAL_STUDIO) && \ + (defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP == 2))) +#define FASTFLOAT_SSE2 1 +#endif + +#if defined(__aarch64__) || defined(_M_ARM64) +#define FASTFLOAT_NEON 1 +#endif + +#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) +#define FASTFLOAT_HAS_SIMD 1 +#endif + +#if defined(__GNUC__) +// disable -Wcast-align=strict (GCC only) +#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ + _Pragma("GCC diagnostic push") \ + _Pragma("GCC diagnostic ignored \"-Wcast-align\"") +#else +#define FASTFLOAT_SIMD_DISABLE_WARNINGS +#endif + +#if defined(__GNUC__) +#define FASTFLOAT_SIMD_RESTORE_WARNINGS \ + _Pragma("GCC diagnostic pop") +#else +#define FASTFLOAT_SIMD_RESTORE_WARNINGS +#endif + + + +#ifdef FASTFLOAT_VISUAL_STUDIO +#define fastfloat_really_inline __forceinline +#else +#define fastfloat_really_inline inline __attribute__((always_inline)) +#endif + +#ifndef FASTFLOAT_ASSERT +#define FASTFLOAT_ASSERT(x) { ((void)(x)); } +#endif + +#ifndef FASTFLOAT_DEBUG_ASSERT +#define FASTFLOAT_DEBUG_ASSERT(x) { ((void)(x)); } +#endif + +// rust style `try!()` macro, or `?` operator +#define FASTFLOAT_TRY(x) { if (!(x)) return false; } + +#define FASTFLOAT_ENABLE_IF(...) typename std::enable_if<(__VA_ARGS__), int>::type + + +namespace fast_float { + +fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { +#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED + return std::is_constant_evaluated(); +#else + return false; +#endif +} + +template +fastfloat_really_inline constexpr bool is_supported_float_type() { + return std::is_same::value || std::is_same::value; +} + +template +fastfloat_really_inline constexpr bool is_supported_char_type() { + return + std::is_same::value || + std::is_same::value || + std::is_same::value || + std::is_same::value; +} + +// Compares two ASCII strings in a case insensitive manner. +template +inline FASTFLOAT_CONSTEXPR14 bool +fastfloat_strncasecmp(UC const * input1, UC const * input2, size_t length) { + char running_diff{0}; + for (size_t i = 0; i < length; ++i) { + running_diff |= (char(input1[i]) ^ char(input2[i])); + } + return (running_diff == 0) || (running_diff == 32); +} + +#ifndef FLT_EVAL_METHOD +#error "FLT_EVAL_METHOD should be defined, please include cfloat." +#endif + +// a pointer and a length to a contiguous block of memory +template +struct span { + const T* ptr; + size_t length; + constexpr span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {} + constexpr span() : ptr(nullptr), length(0) {} + + constexpr size_t len() const noexcept { + return length; + } + + FASTFLOAT_CONSTEXPR14 const T& operator[](size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return ptr[index]; + } +}; + +struct value128 { + uint64_t low; + uint64_t high; + constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} + constexpr value128() : low(0), high(0) {} +}; + +/* Helper C++14 constexpr generic implementation of leading_zeroes */ +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +int leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { + if(input_num & uint64_t(0xffffffff00000000)) { input_num >>= 32; last_bit |= 32; } + if(input_num & uint64_t( 0xffff0000)) { input_num >>= 16; last_bit |= 16; } + if(input_num & uint64_t( 0xff00)) { input_num >>= 8; last_bit |= 8; } + if(input_num & uint64_t( 0xf0)) { input_num >>= 4; last_bit |= 4; } + if(input_num & uint64_t( 0xc)) { input_num >>= 2; last_bit |= 2; } + if(input_num & uint64_t( 0x2)) { /* input_num >>= 1; */ last_bit |= 1; } + return 63 - last_bit; +} + +/* result might be undefined when input_num is zero */ +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +int leading_zeroes(uint64_t input_num) { + assert(input_num > 0); + if (cpp20_and_in_constexpr()) { + return leading_zeroes_generic(input_num); + } +#ifdef FASTFLOAT_VISUAL_STUDIO + #if defined(_M_X64) || defined(_M_ARM64) + unsigned long leading_zero = 0; + // Search the mask data from most significant bit (MSB) + // to least significant bit (LSB) for a set bit (1). + _BitScanReverse64(&leading_zero, input_num); + return (int)(63 - leading_zero); + #else + return leading_zeroes_generic(input_num); + #endif +#else + return __builtin_clzll(input_num); +#endif +} + +// slow emulation routine for 32-bit +fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { + return x * (uint64_t)y; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +uint64_t umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { + uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); + uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); + uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); + uint64_t adbc_carry = !!(adbc < ad); + uint64_t lo = bd + (adbc << 32); + *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + + (adbc_carry << 32) + !!(lo < bd); + return lo; +} + +#ifdef FASTFLOAT_32BIT + +// slow emulation routine for 32-bit +#if !defined(__MINGW64__) +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) { + return umul128_generic(ab, cd, hi); +} +#endif // !__MINGW64__ + +#endif // FASTFLOAT_32BIT + + +// compute 64-bit a*b +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +value128 full_multiplication(uint64_t a, uint64_t b) { + if (cpp20_and_in_constexpr()) { + value128 answer; + answer.low = umul128_generic(a, b, &answer.high); + return answer; + } + value128 answer; +#if defined(_M_ARM64) && !defined(__MINGW32__) + // ARM64 has native support for 64-bit multiplications, no need to emulate + // But MinGW on ARM64 doesn't have native support for 64-bit multiplications + answer.high = __umulh(a, b); + answer.low = a * b; +#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__)) + answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 +#elif defined(FASTFLOAT_64BIT) + __uint128_t r = ((__uint128_t)a) * b; + answer.low = uint64_t(r); + answer.high = uint64_t(r >> 64); +#else + answer.low = umul128_generic(a, b, &answer.high); +#endif + return answer; +} + +struct adjusted_mantissa { + uint64_t mantissa{0}; + int32_t power2{0}; // a negative value indicates an invalid result + adjusted_mantissa() = default; + constexpr bool operator==(const adjusted_mantissa &o) const { + return mantissa == o.mantissa && power2 == o.power2; + } + constexpr bool operator!=(const adjusted_mantissa &o) const { + return mantissa != o.mantissa || power2 != o.power2; + } +}; + +// Bias so we can get the real exponent with an invalid adjusted_mantissa. +constexpr static int32_t invalid_am_bias = -0x8000; + +// used for binary_format_lookup_tables::max_mantissa +constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; + +template +struct binary_format_lookup_tables; + +template struct binary_format : binary_format_lookup_tables { + using equiv_uint = typename std::conditional::type; + + static inline constexpr int mantissa_explicit_bits(); + static inline constexpr int minimum_exponent(); + static inline constexpr int infinite_power(); + static inline constexpr int sign_index(); + static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST + static inline constexpr int max_exponent_fast_path(); + static inline constexpr int max_exponent_round_to_even(); + static inline constexpr int min_exponent_round_to_even(); + static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); + static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST + static inline constexpr int largest_power_of_ten(); + static inline constexpr int smallest_power_of_ten(); + static inline constexpr T exact_power_of_ten(int64_t power); + static inline constexpr size_t max_digits(); + static inline constexpr equiv_uint exponent_mask(); + static inline constexpr equiv_uint mantissa_mask(); + static inline constexpr equiv_uint hidden_bit_mask(); +}; + +template +struct binary_format_lookup_tables { + static constexpr double powers_of_ten[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, + 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; + + // Largest integer value v so that (5**index * v) <= 1<<53. + // 0x10000000000000 == 1 << 53 + static constexpr uint64_t max_mantissa[] = { + 0x10000000000000, + 0x10000000000000 / 5, + 0x10000000000000 / (5 * 5), + 0x10000000000000 / (5 * 5 * 5), + 0x10000000000000 / (5 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555), + 0x10000000000000 / (constant_55555 * 5), + 0x10000000000000 / (constant_55555 * 5 * 5), + 0x10000000000000 / (constant_55555 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555), + 0x10000000000000 / (constant_55555 * constant_55555 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), + 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)}; +}; + +template +constexpr double binary_format_lookup_tables::powers_of_ten[]; + +template +constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; + +template +struct binary_format_lookup_tables { + static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, + 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; + + // Largest integer value v so that (5**index * v) <= 1<<24. + // 0x1000000 == 1<<24 + static constexpr uint64_t max_mantissa[] = { + 0x1000000, + 0x1000000 / 5, + 0x1000000 / (5 * 5), + 0x1000000 / (5 * 5 * 5), + 0x1000000 / (5 * 5 * 5 * 5), + 0x1000000 / (constant_55555), + 0x1000000 / (constant_55555 * 5), + 0x1000000 / (constant_55555 * 5 * 5), + 0x1000000 / (constant_55555 * 5 * 5 * 5), + 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), + 0x1000000 / (constant_55555 * constant_55555), + 0x1000000 / (constant_55555 * constant_55555 * 5)}; +}; + +template +constexpr float binary_format_lookup_tables::powers_of_ten[]; + +template +constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; + +template <> inline constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -22; +#endif +} + +template <> inline constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -10; +#endif +} + +template <> inline constexpr int binary_format::mantissa_explicit_bits() { + return 52; +} +template <> inline constexpr int binary_format::mantissa_explicit_bits() { + return 23; +} + +template <> inline constexpr int binary_format::max_exponent_round_to_even() { + return 23; +} + +template <> inline constexpr int binary_format::max_exponent_round_to_even() { + return 10; +} + +template <> inline constexpr int binary_format::min_exponent_round_to_even() { + return -4; +} + +template <> inline constexpr int binary_format::min_exponent_round_to_even() { + return -17; +} + +template <> inline constexpr int binary_format::minimum_exponent() { + return -1023; +} +template <> inline constexpr int binary_format::minimum_exponent() { + return -127; +} + +template <> inline constexpr int binary_format::infinite_power() { + return 0x7FF; +} +template <> inline constexpr int binary_format::infinite_power() { + return 0xFF; +} + +template <> inline constexpr int binary_format::sign_index() { return 63; } +template <> inline constexpr int binary_format::sign_index() { return 31; } + +template <> inline constexpr int binary_format::max_exponent_fast_path() { + return 22; +} +template <> inline constexpr int binary_format::max_exponent_fast_path() { + return 10; +} + +template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path(int64_t power) { + // caller is responsible to ensure that + // power >= 0 && power <= 22 + // + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)max_mantissa[0], max_mantissa[power]; +} +template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path(int64_t power) { + // caller is responsible to ensure that + // power >= 0 && power <= 10 + // + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)max_mantissa[0], max_mantissa[power]; +} + +template <> +inline constexpr double binary_format::exact_power_of_ten(int64_t power) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)powers_of_ten[0], powers_of_ten[power]; +} +template <> +inline constexpr float binary_format::exact_power_of_ten(int64_t power) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)powers_of_ten[0], powers_of_ten[power]; +} + + +template <> +inline constexpr int binary_format::largest_power_of_ten() { + return 308; +} +template <> +inline constexpr int binary_format::largest_power_of_ten() { + return 38; +} + +template <> +inline constexpr int binary_format::smallest_power_of_ten() { + return -342; +} +template <> +inline constexpr int binary_format::smallest_power_of_ten() { + return -65; +} + +template <> inline constexpr size_t binary_format::max_digits() { + return 769; +} +template <> inline constexpr size_t binary_format::max_digits() { + return 114; +} + +template <> inline constexpr binary_format::equiv_uint + binary_format::exponent_mask() { + return 0x7F800000; +} +template <> inline constexpr binary_format::equiv_uint + binary_format::exponent_mask() { + return 0x7FF0000000000000; +} + +template <> inline constexpr binary_format::equiv_uint + binary_format::mantissa_mask() { + return 0x007FFFFF; +} +template <> inline constexpr binary_format::equiv_uint + binary_format::mantissa_mask() { + return 0x000FFFFFFFFFFFFF; +} + +template <> inline constexpr binary_format::equiv_uint + binary_format::hidden_bit_mask() { + return 0x00800000; +} +template <> inline constexpr binary_format::equiv_uint + binary_format::hidden_bit_mask() { + return 0x0010000000000000; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void to_float(bool negative, adjusted_mantissa am, T &value) { + using fastfloat_uint = typename binary_format::equiv_uint; + fastfloat_uint word = (fastfloat_uint)am.mantissa; + word |= fastfloat_uint(am.power2) << binary_format::mantissa_explicit_bits(); + word |= fastfloat_uint(negative) << binary_format::sign_index(); +#if FASTFLOAT_HAS_BIT_CAST + value = std::bit_cast(word); +#else + ::memcpy(&value, &word, sizeof(T)); +#endif +} + +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default +template +struct space_lut { + static constexpr bool value[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; +}; + +template +constexpr bool space_lut::value[]; + +inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } +#endif + +template +static constexpr uint64_t int_cmp_zeros() +{ + static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), "Unsupported character size"); + return (sizeof(UC) == 1) ? 0x3030303030303030 : (sizeof(UC) == 2) ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | uint64_t(UC('0')) << 16 | UC('0')) : (uint64_t(UC('0')) << 32 | UC('0')); +} +template +static constexpr int int_cmp_len() +{ + return sizeof(uint64_t) / sizeof(UC); +} +template +static constexpr UC const * str_const_nan() +{ + return nullptr; +} +template<> +constexpr char const * str_const_nan() +{ + return "nan"; +} +template<> +constexpr wchar_t const * str_const_nan() +{ + return L"nan"; +} +template<> +constexpr char16_t const * str_const_nan() +{ + return u"nan"; +} +template<> +constexpr char32_t const * str_const_nan() +{ + return U"nan"; +} +template +static constexpr UC const * str_const_inf() +{ + return nullptr; +} +template<> +constexpr char const * str_const_inf() +{ + return "infinity"; +} +template<> +constexpr wchar_t const * str_const_inf() +{ + return L"infinity"; +} +template<> +constexpr char16_t const * str_const_inf() +{ + return u"infinity"; +} +template<> +constexpr char32_t const * str_const_inf() +{ + return U"infinity"; +} + + +template +struct int_luts { + static constexpr uint8_t chdigit[] = { + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255, + 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255, + 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }; + + static constexpr size_t maxdigits_u64[] = { + 64, 41, 32, 28, 25, 23, 22, 21, + 20, 19, 18, 18, 17, 17, 16, 16, + 16, 16, 15, 15, 15, 15, 14, 14, + 14, 14, 14, 14, 14, 13, 13, 13, + 13, 13, 13 + }; + + static constexpr uint64_t min_safe_u64[] = { + 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, 7450580596923828125, 4738381338321616896, + 3909821048582988049, 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, 5559917313492231481, + 2218611106740436992, 8650415919381337933, 2177953337809371136, 6568408355712890625, 1152921504606846976, + 2862423051509815793, 6746640616477458432, 15181127029874798299ull, 1638400000000000000, 3243919932521508681, + 6221821273427820544, 11592836324538749809ull, 876488338465357824, 1490116119384765625, 2481152873203736576, + 4052555153018976267, 6502111422497947648, 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, + 1152921504606846976, 1667889514952984961, 2386420683693101056, 3379220508056640625, 4738381338321616896 + }; +}; + +template +constexpr uint8_t int_luts::chdigit[]; + +template +constexpr size_t int_luts::maxdigits_u64[]; + +template +constexpr uint64_t int_luts::min_safe_u64[]; + +template +fastfloat_really_inline +constexpr uint8_t ch_to_digit(UC c) { return int_luts<>::chdigit[static_cast(c)]; } + +fastfloat_really_inline +constexpr size_t max_digits_u64(int base) { return int_luts<>::maxdigits_u64[base - 2]; } + +// If a u64 is exactly max_digits_u64() in length, this is +// the value below which it has definitely overflowed. +fastfloat_really_inline +constexpr uint64_t min_safe_u64(int base) { return int_luts<>::min_safe_u64[base - 2]; } + +} // namespace fast_float + +#endif + + +#ifndef FASTFLOAT_FAST_FLOAT_H +#define FASTFLOAT_FAST_FLOAT_H + + +namespace fast_float { +/** + * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting + * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. + * The resulting floating-point value is the closest floating-point values (using either float or double), + * using the "round to even" convention for values that would otherwise fall right in-between two values. + * That is, we provide exact parsing according to the IEEE standard. + * + * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the + * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned + * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + * + * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + * + * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of + * the type `fast_float::chars_format`. It is a bitset value: we check whether + * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set + * to determine whether we allow the fixed point and scientific notation respectively. + * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + */ +template())> +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars(UC const * first, UC const * last, + T &value, chars_format fmt = chars_format::general) noexcept; + +/** + * Like from_chars, but accepts an `options` argument to govern number parsing. + */ +template +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars_advanced(UC const * first, UC const * last, + T &value, parse_options_t options) noexcept; +/** +* from_chars for integer types. +*/ +template ())> +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars(UC const * first, UC const * last, T& value, int base = 10) noexcept; + +} // namespace fast_float +#endif // FASTFLOAT_FAST_FLOAT_H + +#ifndef FASTFLOAT_ASCII_NUMBER_H +#define FASTFLOAT_ASCII_NUMBER_H + +#include +#include +#include +#include +#include +#include + + +#ifdef FASTFLOAT_SSE2 +#include +#endif + +#ifdef FASTFLOAT_NEON +#include +#endif + +namespace fast_float { + +template +fastfloat_really_inline constexpr bool has_simd_opt() { +#ifdef FASTFLOAT_HAS_SIMD + return std::is_same::value; +#else + return false; +#endif +} + +// Next function can be micro-optimized, but compilers are entirely +// able to optimize it well. +template +fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { + return !(c > UC('9') || c < UC('0')); +} + +fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { + return (val & 0xFF00000000000000) >> 56 + | (val & 0x00FF000000000000) >> 40 + | (val & 0x0000FF0000000000) >> 24 + | (val & 0x000000FF00000000) >> 8 + | (val & 0x00000000FF000000) << 8 + | (val & 0x0000000000FF0000) << 24 + | (val & 0x000000000000FF00) << 40 + | (val & 0x00000000000000FF) << 56; +} + +// Read 8 UC into a u64. Truncates UC if not char. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t read8_to_u64(const UC *chars) { + if (cpp20_and_in_constexpr() || !std::is_same::value) { + uint64_t val = 0; + for(int i = 0; i < 8; ++i) { + val |= uint64_t(uint8_t(*chars)) << (i*8); + ++chars; + } + return val; + } + uint64_t val; + ::memcpy(&val, chars, sizeof(uint64_t)); +#if FASTFLOAT_IS_BIG_ENDIAN == 1 + // Need to read as-if the number was in little-endian order. + val = byteswap(val); +#endif + return val; +} + +#ifdef FASTFLOAT_SSE2 + +fastfloat_really_inline +uint64_t simd_read8_to_u64(const __m128i data) { +FASTFLOAT_SIMD_DISABLE_WARNINGS + const __m128i packed = _mm_packus_epi16(data, data); +#ifdef FASTFLOAT_64BIT + return uint64_t(_mm_cvtsi128_si64(packed)); +#else + uint64_t value; + // Visual Studio + older versions of GCC don't support _mm_storeu_si64 + _mm_storel_epi64(reinterpret_cast<__m128i*>(&value), packed); + return value; +#endif +FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +fastfloat_really_inline +uint64_t simd_read8_to_u64(const char16_t* chars) { +FASTFLOAT_SIMD_DISABLE_WARNINGS + return simd_read8_to_u64(_mm_loadu_si128(reinterpret_cast(chars))); +FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +#elif defined(FASTFLOAT_NEON) + + +fastfloat_really_inline +uint64_t simd_read8_to_u64(const uint16x8_t data) { +FASTFLOAT_SIMD_DISABLE_WARNINGS + uint8x8_t utf8_packed = vmovn_u16(data); + return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); +FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +fastfloat_really_inline +uint64_t simd_read8_to_u64(const char16_t* chars) { +FASTFLOAT_SIMD_DISABLE_WARNINGS + return simd_read8_to_u64(vld1q_u16(reinterpret_cast(chars))); +FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +#endif // FASTFLOAT_SSE2 + +// MSVC SFINAE is broken pre-VS2017 +#if defined(_MSC_VER) && _MSC_VER <= 1900 +template +#else +template ()) = 0> +#endif +// dummy for compile +uint64_t simd_read8_to_u64(UC const*) { + return 0; +} + + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void write_u64(uint8_t *chars, uint64_t val) { + if (cpp20_and_in_constexpr()) { + for(int i = 0; i < 8; ++i) { + *chars = uint8_t(val); + val >>= 8; + ++chars; + } + return; + } +#if FASTFLOAT_IS_BIG_ENDIAN == 1 + // Need to read as-if the number was in little-endian order. + val = byteswap(val); +#endif + ::memcpy(chars, &val, sizeof(uint64_t)); +} + +// credit @aqrit +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +uint32_t parse_eight_digits_unrolled(uint64_t val) { + const uint64_t mask = 0x000000FF000000FF; + const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) + const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) + val -= 0x3030303030303030; + val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; + val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; + return uint32_t(val); +} + + +// Call this if chars are definitely 8 digits. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint32_t parse_eight_digits_unrolled(UC const * chars) noexcept { + if (cpp20_and_in_constexpr() || !has_simd_opt()) { + return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay + } + return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); +} + + +// credit @aqrit +fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept { + return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & + 0x8080808080808080)); +} + + +#ifdef FASTFLOAT_HAS_SIMD + +// Call this if chars might not be 8 digits. +// Using this style (instead of is_made_of_eight_digits_fast() then parse_eight_digits_unrolled()) +// ensures we don't load SIMD registers twice. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +bool simd_parse_if_eight_digits_unrolled(const char16_t* chars, uint64_t& i) noexcept { + if (cpp20_and_in_constexpr()) { + return false; + } +#ifdef FASTFLOAT_SSE2 +FASTFLOAT_SIMD_DISABLE_WARNINGS + const __m128i data = _mm_loadu_si128(reinterpret_cast(chars)); + + // (x - '0') <= 9 + // http://0x80.pl/articles/simd-parsing-int-sequences.html + const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); + const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); + + if (_mm_movemask_epi8(t1) == 0) { + i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); + return true; + } + else return false; +FASTFLOAT_SIMD_RESTORE_WARNINGS +#elif defined(FASTFLOAT_NEON) +FASTFLOAT_SIMD_DISABLE_WARNINGS + const uint16x8_t data = vld1q_u16(reinterpret_cast(chars)); + + // (x - '0') <= 9 + // http://0x80.pl/articles/simd-parsing-int-sequences.html + const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); + const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); + + if (vminvq_u16(mask) == 0xFFFF) { + i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); + return true; + } + else return false; +FASTFLOAT_SIMD_RESTORE_WARNINGS +#else + (void)chars; (void)i; + return false; +#endif // FASTFLOAT_SSE2 +} + +#endif // FASTFLOAT_HAS_SIMD + +// MSVC SFINAE is broken pre-VS2017 +#if defined(_MSC_VER) && _MSC_VER <= 1900 +template +#else +template ()) = 0> +#endif +// dummy for compile +bool simd_parse_if_eight_digits_unrolled(UC const*, uint64_t&) { + return 0; +} + + +template ::value) = 0> +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void loop_parse_if_eight_digits(const UC*& p, const UC* const pend, uint64_t& i) { + if (!has_simd_opt()) { + return; + } + while ((std::distance(p, pend) >= 8) && simd_parse_if_eight_digits_unrolled(p, i)) { // in rare cases, this will overflow, but that's ok + p += 8; + } +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void loop_parse_if_eight_digits(const char*& p, const char* const pend, uint64_t& i) { + // optimizes better than parse_if_eight_digits_unrolled() for UC = char. + while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(read8_to_u64(p))) { + i = i * 100000000 + parse_eight_digits_unrolled(read8_to_u64(p)); // in rare cases, this will overflow, but that's ok + p += 8; + } +} + +template +struct parsed_number_string_t { + int64_t exponent{0}; + uint64_t mantissa{0}; + UC const * lastmatch{nullptr}; + bool negative{false}; + bool valid{false}; + bool too_many_digits{false}; + // contains the range of the significant digits + span integer{}; // non-nullable + span fraction{}; // nullable +}; + +using byte_span = span; +using parsed_number_string = parsed_number_string_t; + +// Assuming that you use no more than 19 digits, this will +// parse an ASCII string. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +parsed_number_string_t parse_number_string(UC const *p, UC const * pend, parse_options_t options) noexcept { + chars_format const fmt = options.format; + UC const decimal_point = options.decimal_point; + + parsed_number_string_t answer; + answer.valid = false; + answer.too_many_digits = false; + answer.negative = (*p == UC('-')); +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { +#else + if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here +#endif + ++p; + if (p == pend) { + return answer; + } + if (fmt & FASTFLOAT_JSONFMT) { + if (!is_integer(*p)) { // a sign must be followed by an integer + return answer; + } + } else { + if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot + return answer; + } + } + } + UC const * const start_digits = p; + + uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + i = 10 * i + + uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later + ++p; + } + UC const * const end_of_integer_part = p; + int64_t digit_count = int64_t(end_of_integer_part - start_digits); + answer.integer = span(start_digits, size_t(digit_count)); + if (fmt & FASTFLOAT_JSONFMT) { + // at least 1 digit in integer part, without leading zeros + if (digit_count == 0 || (start_digits[0] == UC('0') && digit_count > 1)) { + return answer; + } + } + + int64_t exponent = 0; + const bool has_decimal_point = (p != pend) && (*p == decimal_point); + if (has_decimal_point) { + ++p; + UC const * before = p; + // can occur at most twice without overflowing, but let it occur more, since + // for integers with many digits, digit parsing is the primary bottleneck. + loop_parse_if_eight_digits(p, pend, i); + + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - UC('0')); + ++p; + i = i * 10 + digit; // in rare cases, this will overflow, but that's ok + } + exponent = before - p; + answer.fraction = span(before, size_t(p - before)); + digit_count -= exponent; + } + if (fmt & FASTFLOAT_JSONFMT) { + // at least 1 digit in fractional part + if (has_decimal_point && exponent == 0) { + return answer; + } + } + else if (digit_count == 0) { // we must have encountered at least one integer! + return answer; + } + int64_t exp_number = 0; // explicit exponential part + if ( ((fmt & chars_format::scientific) && + (p != pend) && + ((UC('e') == *p) || (UC('E') == *p))) + || + ((fmt & FASTFLOAT_FORTRANFMT) && + (p != pend) && + ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || (UC('D') == *p)))) { + UC const * location_of_e = p; + if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || (UC('D') == *p)) { + ++p; + } + bool neg_exp = false; + if ((p != pend) && (UC('-') == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) + ++p; + } + if ((p == pend) || !is_integer(*p)) { + if(!(fmt & chars_format::fixed)) { + // We are in error. + return answer; + } + // Otherwise, we will be ignoring the 'e'. + p = location_of_e; + } else { + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - UC('0')); + if (exp_number < 0x10000000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + if(neg_exp) { exp_number = - exp_number; } + exponent += exp_number; + } + } else { + // If it scientific and not fixed, we have to bail out. + if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } + } + answer.lastmatch = p; + answer.valid = true; + + // If we frequently had to deal with long strings of digits, + // we could extend our code by using a 128-bit integer instead + // of a 64-bit integer. However, this is uncommon. + // + // We can deal with up to 19 digits. + if (digit_count > 19) { // this is uncommon + // It is possible that the integer had an overflow. + // We have to handle the case where we have 0.0000somenumber. + // We need to be mindful of the case where we only have zeroes... + // E.g., 0.000000000...000. + UC const * start = start_digits; + while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { + if(*start == UC('0')) { digit_count --; } + start++; + } + + if (digit_count > 19) { + answer.too_many_digits = true; + // Let us start again, this time, avoiding overflows. + // We don't need to check if is_integer, since we use the + // pre-tokenized spans from above. + i = 0; + p = answer.integer.ptr; + UC const* int_end = p + answer.integer.len(); + const uint64_t minimal_nineteen_digit_integer{ 1000000000000000000 }; + while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { + i = i * 10 + uint64_t(*p - UC('0')); + ++p; + } + if (i >= minimal_nineteen_digit_integer) { // We have a big integers + exponent = end_of_integer_part - p + exp_number; + } + else { // We have a value with a fractional component. + p = answer.fraction.ptr; + UC const* frac_end = p + answer.fraction.len(); + while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { + i = i * 10 + uint64_t(*p - UC('0')); + ++p; + } + exponent = answer.fraction.ptr - p + exp_number; + } + // We have now corrected both exponent and i, to a truncated value + } + } + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +from_chars_result_t parse_int_string(UC const* p, UC const* pend, T& value, int base) +{ + from_chars_result_t answer; + + UC const* const first = p; + + bool negative = (*p == UC('-')); + if (!std::is_signed::value && negative) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if ((*p == UC('-')) || (*p == UC('+'))) { +#else + if (*p == UC('-')) { +#endif + ++p; + } + + UC const* const start_num = p; + while (*p == UC('0')) { + ++p; + } + const bool has_leading_zeros = p > start_num; + + UC const* const start_digits = p; + + uint64_t i = 0; + if (base == 10) { + loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible + } + while (p != pend) { + uint8_t digit = ch_to_digit(*p); + if (digit >= base) { + break; + } + i = uint64_t(base) * i + digit; // might overflow, check this later + p++; + } + + size_t digit_count = size_t(p - start_digits); + + if (digit_count == 0) { + if (has_leading_zeros) { + value = 0; + answer.ec = std::errc(); + answer.ptr = p; + } + else { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + } + return answer; + } + + answer.ptr = p; + + // check u64 overflow + size_t max_digits = max_digits_u64(base); + if (digit_count > max_digits) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + // this check can be eliminated for all other types, but they will all require a max_digits(base) equivalent + if (digit_count == max_digits && i < min_safe_u64(base)) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + + // check other types overflow + if (!std::is_same::value) { + if (i > uint64_t(std::numeric_limits::max()) + uint64_t(negative)) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + } + + if (negative) { +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(push) +#pragma warning(disable: 4146) +#endif + // this weird workaround is required because: + // - converting unsigned to signed when its value is greater than signed max is UB pre-C++23. + // - reinterpret_casting (~i + 1) would work, but it is not constexpr + // this is always optimized into a neg instruction. + value = T(-std::numeric_limits::max() - T(i - std::numeric_limits::max())); +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(pop) +#endif + } + else { value = T(i); } + + answer.ec = std::errc(); + return answer; +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_FAST_TABLE_H +#define FASTFLOAT_FAST_TABLE_H + +#include + +namespace fast_float { + +/** + * When mapping numbers from decimal to binary, + * we go from w * 10^q to m * 2^p but we have + * 10^q = 5^q * 2^q, so effectively + * we are trying to match + * w * 2^q * 5^q to m * 2^p. Thus the powers of two + * are not a concern since they can be represented + * exactly using the binary notation, only the powers of five + * affect the binary significand. + */ + +/** + * The smallest non-zero float (binary64) is 2^-1074. + * We take as input numbers of the form w x 10^q where w < 2^64. + * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. + * However, we have that + * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. + * Thus it is possible for a number of the form w * 10^-342 where + * w is a 64-bit value to be a non-zero floating-point number. + ********* + * Any number of form w * 10^309 where w>= 1 is going to be + * infinite in binary64 so we never need to worry about powers + * of 5 greater than 308. + */ +template +struct powers_template { + +constexpr static int smallest_power_of_five = binary_format::smallest_power_of_ten(); +constexpr static int largest_power_of_five = binary_format::largest_power_of_ten(); +constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1); +// Powers of five from 5^-342 all the way to 5^308 rounded toward one. +constexpr static uint64_t power_of_five_128[number_of_entries] = { + 0xeef453d6923bd65a,0x113faa2906a13b3f, + 0x9558b4661b6565f8,0x4ac7ca59a424c507, + 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, + 0xe95a99df8ace6f53,0xf4d82c2c107973dc, + 0x91d8a02bb6c10594,0x79071b9b8a4be869, + 0xb64ec836a47146f9,0x9748e2826cdee284, + 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, + 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, + 0xb208ef855c969f4f,0xbdbd2d335e51a935, + 0xde8b2b66b3bc4723,0xad2c788035e61382, + 0x8b16fb203055ac76,0x4c3bcb5021afcc31, + 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, + 0xd953e8624b85dd78,0xd71d6dad34a2af0d, + 0x87d4713d6f33aa6b,0x8672648c40e5ad68, + 0xa9c98d8ccb009506,0x680efdaf511f18c2, + 0xd43bf0effdc0ba48,0x212bd1b2566def2, + 0x84a57695fe98746d,0x14bb630f7604b57, + 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, + 0xcf42894a5dce35ea,0x52064cac828675b9, + 0x818995ce7aa0e1b2,0x7343efebd1940993, + 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, + 0xca66fa129f9b60a6,0xd41a26e077774ef6, + 0xfd00b897478238d0,0x8920b098955522b4, + 0x9e20735e8cb16382,0x55b46e5f5d5535b0, + 0xc5a890362fddbc62,0xeb2189f734aa831d, + 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, + 0x9a6bb0aa55653b2d,0x47b233c92125366e, + 0xc1069cd4eabe89f8,0x999ec0bb696e840a, + 0xf148440a256e2c76,0xc00670ea43ca250d, + 0x96cd2a865764dbca,0x380406926a5e5728, + 0xbc807527ed3e12bc,0xc605083704f5ecf2, + 0xeba09271e88d976b,0xf7864a44c633682e, + 0x93445b8731587ea3,0x7ab3ee6afbe0211d, + 0xb8157268fdae9e4c,0x5960ea05bad82964, + 0xe61acf033d1a45df,0x6fb92487298e33bd, + 0x8fd0c16206306bab,0xa5d3b6d479f8e056, + 0xb3c4f1ba87bc8696,0x8f48a4899877186c, + 0xe0b62e2929aba83c,0x331acdabfe94de87, + 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, + 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, + 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, + 0x892731ac9faf056e,0xbe311c083a225cd2, + 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, + 0xd64d3d9db981787d,0x92cbbccdad5b108, + 0x85f0468293f0eb4e,0x25bbf56008c58ea5, + 0xa76c582338ed2621,0xaf2af2b80af6f24e, + 0xd1476e2c07286faa,0x1af5af660db4aee1, + 0x82cca4db847945ca,0x50d98d9fc890ed4d, + 0xa37fce126597973c,0xe50ff107bab528a0, + 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, + 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, + 0x9faacf3df73609b1,0x77b191618c54e9ac, + 0xc795830d75038c1d,0xd59df5b9ef6a2417, + 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, + 0x9becce62836ac577,0x4ee367f9430aec32, + 0xc2e801fb244576d5,0x229c41f793cda73f, + 0xf3a20279ed56d48a,0x6b43527578c1110f, + 0x9845418c345644d6,0x830a13896b78aaa9, + 0xbe5691ef416bd60c,0x23cc986bc656d553, + 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, + 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, + 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, + 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, + 0x91376c36d99995be,0x23100809b9c21fa1, + 0xb58547448ffffb2d,0xabd40a0c2832a78a, + 0xe2e69915b3fff9f9,0x16c90c8f323f516c, + 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, + 0xb1442798f49ffb4a,0x99cd11cfdf41779c, + 0xdd95317f31c7fa1d,0x40405643d711d583, + 0x8a7d3eef7f1cfc52,0x482835ea666b2572, + 0xad1c8eab5ee43b66,0xda3243650005eecf, + 0xd863b256369d4a40,0x90bed43e40076a82, + 0x873e4f75e2224e68,0x5a7744a6e804a291, + 0xa90de3535aaae202,0x711515d0a205cb36, + 0xd3515c2831559a83,0xd5a5b44ca873e03, + 0x8412d9991ed58091,0xe858790afe9486c2, + 0xa5178fff668ae0b6,0x626e974dbe39a872, + 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, + 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, + 0xa139029f6a239f72,0x1c1fffc1ebc44e80, + 0xc987434744ac874e,0xa327ffb266b56220, + 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, + 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, + 0xc4ce17b399107c22,0xcb550fb4384d21d3, + 0xf6019da07f549b2b,0x7e2a53a146606a48, + 0x99c102844f94e0fb,0x2eda7444cbfc426d, + 0xc0314325637a1939,0xfa911155fefb5308, + 0xf03d93eebc589f88,0x793555ab7eba27ca, + 0x96267c7535b763b5,0x4bc1558b2f3458de, + 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, + 0xea9c227723ee8bcb,0x465e15a979c1cadc, + 0x92a1958a7675175f,0xbfacd89ec191ec9, + 0xb749faed14125d36,0xcef980ec671f667b, + 0xe51c79a85916f484,0x82b7e12780e7401a, + 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, + 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, + 0xdfbdcece67006ac9,0x67a791e093e1d49a, + 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, + 0xaecc49914078536d,0x58fae9f773886e18, + 0xda7f5bf590966848,0xaf39a475506a899e, + 0x888f99797a5e012d,0x6d8406c952429603, + 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, + 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, + 0x855c3be0a17fcd26,0x5cf2eea09a55067f, + 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, + 0xd0601d8efc57b08b,0xf13b94daf124da26, + 0x823c12795db6ce57,0x76c53d08d6b70858, + 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, + 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, + 0xfe5d54150b090b02,0xd3f93b35435d7c4c, + 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, + 0xc6b8e9b0709f109a,0x359ab6419ca1091b, + 0xf867241c8cc6d4c0,0xc30163d203c94b62, + 0x9b407691d7fc44f8,0x79e0de63425dcf1d, + 0xc21094364dfb5636,0x985915fc12f542e4, + 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, + 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, + 0xbd8430bd08277231,0x50c6ff782a838353, + 0xece53cec4a314ebd,0xa4f8bf5635246428, + 0x940f4613ae5ed136,0x871b7795e136be99, + 0xb913179899f68584,0x28e2557b59846e3f, + 0xe757dd7ec07426e5,0x331aeada2fe589cf, + 0x9096ea6f3848984f,0x3ff0d2c85def7621, + 0xb4bca50b065abe63,0xfed077a756b53a9, + 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, + 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, + 0xb080392cc4349dec,0xbd8d794d96aacfb3, + 0xdca04777f541c567,0xecf0d7a0fc5583a0, + 0x89e42caaf9491b60,0xf41686c49db57244, + 0xac5d37d5b79b6239,0x311c2875c522ced5, + 0xd77485cb25823ac7,0x7d633293366b828b, + 0x86a8d39ef77164bc,0xae5dff9c02033197, + 0xa8530886b54dbdeb,0xd9f57f830283fdfc, + 0xd267caa862a12d66,0xd072df63c324fd7b, + 0x8380dea93da4bc60,0x4247cb9e59f71e6d, + 0xa46116538d0deb78,0x52d9be85f074e608, + 0xcd795be870516656,0x67902e276c921f8b, + 0x806bd9714632dff6,0xba1cd8a3db53b6, + 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, + 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, + 0xfad2a4b13d1b5d6c,0x796b805720085f81, + 0x9cc3a6eec6311a63,0xcbe3303674053bb0, + 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, + 0xf4f1b4d515acb93b,0xee92fb5515482d44, + 0x991711052d8bf3c5,0x751bdd152d4d1c4a, + 0xbf5cd54678eef0b6,0xd262d45a78a0635d, + 0xef340a98172aace4,0x86fb897116c87c34, + 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, + 0xbae0a846d2195712,0x8974836059cca109, + 0xe998d258869facd7,0x2bd1a438703fc94b, + 0x91ff83775423cc06,0x7b6306a34627ddcf, + 0xb67f6455292cbf08,0x1a3bc84c17b1d542, + 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, + 0x8e938662882af53e,0x547eb47b7282ee9c, + 0xb23867fb2a35b28d,0xe99e619a4f23aa43, + 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, + 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, + 0xae0b158b4738705e,0x9624ab50b148d445, + 0xd98ddaee19068c76,0x3badd624dd9b0957, + 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, + 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, + 0xd47487cc8470652b,0x7647c3200069671f, + 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, + 0xa5fb0a17c777cf09,0xf468107100525890, + 0xcf79cc9db955c2cc,0x7182148d4066eeb4, + 0x81ac1fe293d599bf,0xc6f14cd848405530, + 0xa21727db38cb002f,0xb8ada00e5a506a7c, + 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, + 0xfd442e4688bd304a,0x908f4a166d1da663, + 0x9e4a9cec15763e2e,0x9a598e4e043287fe, + 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, + 0xf7549530e188c128,0xd12bee59e68ef47c, + 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, + 0xc13a148e3032d6e7,0xe36a52363c1faf01, + 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, + 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, + 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, + 0xebdf661791d60f56,0x111b495b3464ad21, + 0x936b9fcebb25c995,0xcab10dd900beec34, + 0xb84687c269ef3bfb,0x3d5d514f40eea742, + 0xe65829b3046b0afa,0xcb4a5a3112a5112, + 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, + 0xb3f4e093db73a093,0x59ed216765690f56, + 0xe0f218b8d25088b8,0x306869c13ec3532c, + 0x8c974f7383725573,0x1e414218c73a13fb, + 0xafbd2350644eeacf,0xe5d1929ef90898fa, + 0xdbac6c247d62a583,0xdf45f746b74abf39, + 0x894bc396ce5da772,0x6b8bba8c328eb783, + 0xab9eb47c81f5114f,0x66ea92f3f326564, + 0xd686619ba27255a2,0xc80a537b0efefebd, + 0x8613fd0145877585,0xbd06742ce95f5f36, + 0xa798fc4196e952e7,0x2c48113823b73704, + 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, + 0x82ef85133de648c4,0x9a984d73dbe722fb, + 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, + 0xcc963fee10b7d1b3,0x318df905079926a8, + 0xffbbcfe994e5c61f,0xfdf17746497f7052, + 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, + 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, + 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, + 0x9c1661a651213e2d,0x6bea10ca65c084e, + 0xc31bfa0fe5698db8,0x486e494fcff30a62, + 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, + 0x986ddb5c6b3a76b7,0xf89629465a75e01c, + 0xbe89523386091465,0xf6bbb397f1135823, + 0xee2ba6c0678b597f,0x746aa07ded582e2c, + 0x94db483840b717ef,0xa8c2a44eb4571cdc, + 0xba121a4650e4ddeb,0x92f34d62616ce413, + 0xe896a0d7e51e1566,0x77b020baf9c81d17, + 0x915e2486ef32cd60,0xace1474dc1d122e, + 0xb5b5ada8aaff80b8,0xd819992132456ba, + 0xe3231912d5bf60e6,0x10e1fff697ed6c69, + 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, + 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, + 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, + 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, + 0xad4ab7112eb3929d,0x86c16c98d2c953c6, + 0xd89d64d57a607744,0xe871c7bf077ba8b7, + 0x87625f056c7c4a8b,0x11471cd764ad4972, + 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, + 0xd389b47879823479,0x4aff1d108d4ec2c3, + 0x843610cb4bf160cb,0xcedf722a585139ba, + 0xa54394fe1eedb8fe,0xc2974eb4ee658828, + 0xce947a3da6a9273e,0x733d226229feea32, + 0x811ccc668829b887,0x806357d5a3f525f, + 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, + 0xc9bcff6034c13052,0xfc89b393dd02f0b5, + 0xfc2c3f3841f17c67,0xbbac2078d443ace2, + 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, + 0xc5029163f384a931,0xa9e795e65d4df11, + 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, + 0x99ea0196163fa42e,0x504bced1bf8e4e45, + 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, + 0xf07da27a82c37088,0x5d767327bb4e5a4c, + 0x964e858c91ba2655,0x3a6a07f8d510f86f, + 0xbbe226efb628afea,0x890489f70a55368b, + 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, + 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, + 0xb77ada0617e3bbcb,0x9ce6ebb40173744, + 0xe55990879ddcaabd,0xcc420a6a101d0515, + 0x8f57fa54c2a9eab6,0x9fa946824a12232d, + 0xb32df8e9f3546564,0x47939822dc96abf9, + 0xdff9772470297ebd,0x59787e2b93bc56f7, + 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, + 0xaefae51477a06b03,0xede622920b6b23f1, + 0xdab99e59958885c4,0xe95fab368e45eced, + 0x88b402f7fd75539b,0x11dbcb0218ebb414, + 0xaae103b5fcd2a881,0xd652bdc29f26a119, + 0xd59944a37c0752a2,0x4be76d3346f0495f, + 0x857fcae62d8493a5,0x6f70a4400c562ddb, + 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, + 0xd097ad07a71f26b2,0x7e2000a41346a7a7, + 0x825ecc24c873782f,0x8ed400668c0c28c8, + 0xa2f67f2dfa90563b,0x728900802f0f32fa, + 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, + 0xfea126b7d78186bc,0xe2f610c84987bfa8, + 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, + 0xc6ede63fa05d3143,0x91503d1c79720dbb, + 0xf8a95fcf88747d94,0x75a44c6397ce912a, + 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, + 0xc24452da229b021b,0xfbe85badce996168, + 0xf2d56790ab41c2a2,0xfae27299423fb9c3, + 0x97c560ba6b0919a5,0xdccd879fc967d41a, + 0xbdb6b8e905cb600f,0x5400e987bbc1c920, + 0xed246723473e3813,0x290123e9aab23b68, + 0x9436c0760c86e30b,0xf9a0b6720aaf6521, + 0xb94470938fa89bce,0xf808e40e8d5b3e69, + 0xe7958cb87392c2c2,0xb60b1d1230b20e04, + 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, + 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, + 0xe2280b6c20dd5232,0x25c6da63c38de1b0, + 0x8d590723948a535f,0x579c487e5a38ad0e, + 0xb0af48ec79ace837,0x2d835a9df0c6d851, + 0xdcdb1b2798182244,0xf8e431456cf88e65, + 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, + 0xac8b2d36eed2dac5,0xe272467e3d222f3f, + 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, + 0x86ccbb52ea94baea,0x98e947129fc2b4e9, + 0xa87fea27a539e9a5,0x3f2398d747b36224, + 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, + 0x83a3eeeef9153e89,0x1953cf68300424ac, + 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, + 0xcdb02555653131b6,0x3792f412cb06794d, + 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, + 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, + 0xc8de047564d20a8b,0xf245825a5a445275, + 0xfb158592be068d2e,0xeed6e2f0f0d56712, + 0x9ced737bb6c4183d,0x55464dd69685606b, + 0xc428d05aa4751e4c,0xaa97e14c3c26b886, + 0xf53304714d9265df,0xd53dd99f4b3066a8, + 0x993fe2c6d07b7fab,0xe546a8038efe4029, + 0xbf8fdb78849a5f96,0xde98520472bdd033, + 0xef73d256a5c0f77c,0x963e66858f6d4440, + 0x95a8637627989aad,0xdde7001379a44aa8, + 0xbb127c53b17ec159,0x5560c018580d5d52, + 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, + 0x9226712162ab070d,0xcab3961304ca70e8, + 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, + 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, + 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, + 0xb267ed1940f1c61c,0x55f038b237591ed3, + 0xdf01e85f912e37a3,0x6b6c46dec52f6688, + 0x8b61313bbabce2c6,0x2323ac4b3b3da015, + 0xae397d8aa96c1b77,0xabec975e0a0d081a, + 0xd9c7dced53c72255,0x96e7bd358c904a21, + 0x881cea14545c7575,0x7e50d64177da2e54, + 0xaa242499697392d2,0xdde50bd1d5d0b9e9, + 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, + 0x84ec3c97da624ab4,0xbd5af13bef0b113e, + 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, + 0xcfb11ead453994ba,0x67de18eda5814af2, + 0x81ceb32c4b43fcf4,0x80eacf948770ced7, + 0xa2425ff75e14fc31,0xa1258379a94d028d, + 0xcad2f7f5359a3b3e,0x96ee45813a04330, + 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, + 0x9e74d1b791e07e48,0x775ea264cf55347e, + 0xc612062576589dda,0x95364afe032a819e, + 0xf79687aed3eec551,0x3a83ddbd83f52205, + 0x9abe14cd44753b52,0xc4926a9672793543, + 0xc16d9a0095928a27,0x75b7053c0f178294, + 0xf1c90080baf72cb1,0x5324c68b12dd6339, + 0x971da05074da7bee,0xd3f6fc16ebca5e04, + 0xbce5086492111aea,0x88f4bb1ca6bcf585, + 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, + 0x9392ee8e921d5d07,0x3aff322e62439fd0, + 0xb877aa3236a4b449,0x9befeb9fad487c3, + 0xe69594bec44de15b,0x4c2ebe687989a9b4, + 0x901d7cf73ab0acd9,0xf9d37014bf60a11, + 0xb424dc35095cd80f,0x538484c19ef38c95, + 0xe12e13424bb40e13,0x2865a5f206b06fba, + 0x8cbccc096f5088cb,0xf93f87b7442e45d4, + 0xafebff0bcb24aafe,0xf78f69a51539d749, + 0xdbe6fecebdedd5be,0xb573440e5a884d1c, + 0x89705f4136b4a597,0x31680a88f8953031, + 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, + 0xd6bf94d5e57a42bc,0x3d32907604691b4d, + 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, + 0xa7c5ac471b478423,0xfcf80dc33721d54, + 0xd1b71758e219652b,0xd3c36113404ea4a9, + 0x83126e978d4fdf3b,0x645a1cac083126ea, + 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, + 0xcccccccccccccccc,0xcccccccccccccccd, + 0x8000000000000000,0x0, + 0xa000000000000000,0x0, + 0xc800000000000000,0x0, + 0xfa00000000000000,0x0, + 0x9c40000000000000,0x0, + 0xc350000000000000,0x0, + 0xf424000000000000,0x0, + 0x9896800000000000,0x0, + 0xbebc200000000000,0x0, + 0xee6b280000000000,0x0, + 0x9502f90000000000,0x0, + 0xba43b74000000000,0x0, + 0xe8d4a51000000000,0x0, + 0x9184e72a00000000,0x0, + 0xb5e620f480000000,0x0, + 0xe35fa931a0000000,0x0, + 0x8e1bc9bf04000000,0x0, + 0xb1a2bc2ec5000000,0x0, + 0xde0b6b3a76400000,0x0, + 0x8ac7230489e80000,0x0, + 0xad78ebc5ac620000,0x0, + 0xd8d726b7177a8000,0x0, + 0x878678326eac9000,0x0, + 0xa968163f0a57b400,0x0, + 0xd3c21bcecceda100,0x0, + 0x84595161401484a0,0x0, + 0xa56fa5b99019a5c8,0x0, + 0xcecb8f27f4200f3a,0x0, + 0x813f3978f8940984,0x4000000000000000, + 0xa18f07d736b90be5,0x5000000000000000, + 0xc9f2c9cd04674ede,0xa400000000000000, + 0xfc6f7c4045812296,0x4d00000000000000, + 0x9dc5ada82b70b59d,0xf020000000000000, + 0xc5371912364ce305,0x6c28000000000000, + 0xf684df56c3e01bc6,0xc732000000000000, + 0x9a130b963a6c115c,0x3c7f400000000000, + 0xc097ce7bc90715b3,0x4b9f100000000000, + 0xf0bdc21abb48db20,0x1e86d40000000000, + 0x96769950b50d88f4,0x1314448000000000, + 0xbc143fa4e250eb31,0x17d955a000000000, + 0xeb194f8e1ae525fd,0x5dcfab0800000000, + 0x92efd1b8d0cf37be,0x5aa1cae500000000, + 0xb7abc627050305ad,0xf14a3d9e40000000, + 0xe596b7b0c643c719,0x6d9ccd05d0000000, + 0x8f7e32ce7bea5c6f,0xe4820023a2000000, + 0xb35dbf821ae4f38b,0xdda2802c8a800000, + 0xe0352f62a19e306e,0xd50b2037ad200000, + 0x8c213d9da502de45,0x4526f422cc340000, + 0xaf298d050e4395d6,0x9670b12b7f410000, + 0xdaf3f04651d47b4c,0x3c0cdd765f114000, + 0x88d8762bf324cd0f,0xa5880a69fb6ac800, + 0xab0e93b6efee0053,0x8eea0d047a457a00, + 0xd5d238a4abe98068,0x72a4904598d6d880, + 0x85a36366eb71f041,0x47a6da2b7f864750, + 0xa70c3c40a64e6c51,0x999090b65f67d924, + 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, + 0x82818f1281ed449f,0xbff8f10e7a8921a4, + 0xa321f2d7226895c7,0xaff72d52192b6a0d, + 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, + 0xfee50b7025c36a08,0x2f236d04753d5b4, + 0x9f4f2726179a2245,0x1d762422c946590, + 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, + 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, + 0x9b934c3b330c8577,0x63cc55f49f88eb2f, + 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, + 0xf316271c7fc3908a,0x8bef464e3945ef7a, + 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, + 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, + 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, + 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, + 0xb975d6b6ee39e436,0xb3e2fd538e122b44, + 0xe7d34c64a9c85d44,0x60dbbca87196b616, + 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, + 0xb51d13aea4a488dd,0x6babab6398bdbe41, + 0xe264589a4dcdab14,0xc696963c7eed2dd1, + 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, + 0xb0de65388cc8ada8,0x3b25a55f43294bcb, + 0xdd15fe86affad912,0x49ef0eb713f39ebe, + 0x8a2dbf142dfcc7ab,0x6e3569326c784337, + 0xacb92ed9397bf996,0x49c2c37f07965404, + 0xd7e77a8f87daf7fb,0xdc33745ec97be906, + 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, + 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, + 0xd2d80db02aabd62b,0xf50a3fa490c30190, + 0x83c7088e1aab65db,0x792667c6da79e0fa, + 0xa4b8cab1a1563f52,0x577001b891185938, + 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, + 0x80b05e5ac60b6178,0x544f8158315b05b4, + 0xa0dc75f1778e39d6,0x696361ae3db1c721, + 0xc913936dd571c84c,0x3bc3a19cd1e38e9, + 0xfb5878494ace3a5f,0x4ab48a04065c723, + 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, + 0xc45d1df942711d9a,0x3ba5d0bd324f8394, + 0xf5746577930d6500,0xca8f44ec7ee36479, + 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, + 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, + 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, + 0x95d04aee3b80ece5,0xbba1f1d158724a12, + 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, + 0xea1575143cf97226,0xf52d09d71a3293bd, + 0x924d692ca61be758,0x593c2626705f9c56, + 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, + 0xe498f455c38b997a,0xb6dfb9c0f956447, + 0x8edf98b59a373fec,0x4724bd4189bd5eac, + 0xb2977ee300c50fe7,0x58edec91ec2cb657, + 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, + 0x8b865b215899f46c,0xbd79e0d20082ee74, + 0xae67f1e9aec07187,0xecd8590680a3aa11, + 0xda01ee641a708de9,0xe80e6f4820cc9495, + 0x884134fe908658b2,0x3109058d147fdcdd, + 0xaa51823e34a7eede,0xbd4b46f0599fd415, + 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, + 0x850fadc09923329e,0x3e2cf6bc604ddb0, + 0xa6539930bf6bff45,0x84db8346b786151c, + 0xcfe87f7cef46ff16,0xe612641865679a63, + 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, + 0xa26da3999aef7749,0xe3be5e330f38f09d, + 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, + 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, + 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, + 0xc646d63501a1511d,0xb281e1fd541501b8, + 0xf7d88bc24209a565,0x1f225a7ca91a4226, + 0x9ae757596946075f,0x3375788de9b06958, + 0xc1a12d2fc3978937,0x52d6b1641c83ae, + 0xf209787bb47d6b84,0xc0678c5dbd23a49a, + 0x9745eb4d50ce6332,0xf840b7ba963646e0, + 0xbd176620a501fbff,0xb650e5a93bc3d898, + 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, + 0x93ba47c980e98cdf,0xc66f336c36b10137, + 0xb8a8d9bbe123f017,0xb80b0047445d4184, + 0xe6d3102ad96cec1d,0xa60dc059157491e5, + 0x9043ea1ac7e41392,0x87c89837ad68db2f, + 0xb454e4a179dd1877,0x29babe4598c311fb, + 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, + 0x8ce2529e2734bb1d,0x1899e4a65f58660c, + 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, + 0xdc21a1171d42645d,0x76707543f4fa1f73, + 0x899504ae72497eba,0x6a06494a791c53a8, + 0xabfa45da0edbde69,0x487db9d17636892, + 0xd6f8d7509292d603,0x45a9d2845d3c42b6, + 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, + 0xa7f26836f282b732,0x8e6cac7768d7141e, + 0xd1ef0244af2364ff,0x3207d795430cd926, + 0x8335616aed761f1f,0x7f44e6bd49e807b8, + 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, + 0xcd036837130890a1,0x36dba887c37a8c0f, + 0x802221226be55a64,0xc2494954da2c9789, + 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, + 0xc83553c5c8965d3d,0x6f92829494e5acc7, + 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, + 0x9c69a97284b578d7,0xff2a760414536efb, + 0xc38413cf25e2d70d,0xfef5138519684aba, + 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, + 0x98bf2f79d5993802,0xef2f773ffbd97a61, + 0xbeeefb584aff8603,0xaafb550ffacfd8fa, + 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, + 0x952ab45cfa97a0b2,0xdd945a747bf26183, + 0xba756174393d88df,0x94f971119aeef9e4, + 0xe912b9d1478ceb17,0x7a37cd5601aab85d, + 0x91abb422ccb812ee,0xac62e055c10ab33a, + 0xb616a12b7fe617aa,0x577b986b314d6009, + 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, + 0x8e41ade9fbebc27d,0x14588f13be847307, + 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, + 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, + 0x8aec23d680043bee,0x25de7bb9480d5854, + 0xada72ccc20054ae9,0xaf561aa79a10ae6a, + 0xd910f7ff28069da4,0x1b2ba1518094da04, + 0x87aa9aff79042286,0x90fb44d2f05d0842, + 0xa99541bf57452b28,0x353a1607ac744a53, + 0xd3fa922f2d1675f2,0x42889b8997915ce8, + 0x847c9b5d7c2e09b7,0x69956135febada11, + 0xa59bc234db398c25,0x43fab9837e699095, + 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, + 0x8161afb94b44f57d,0x1d1be0eebac278f5, + 0xa1ba1ba79e1632dc,0x6462d92a69731732, + 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, + 0xfcb2cb35e702af78,0x5cda735244c3d43e, + 0x9defbf01b061adab,0x3a0888136afa64a7, + 0xc56baec21c7a1916,0x88aaa1845b8fdd0, + 0xf6c69a72a3989f5b,0x8aad549e57273d45, + 0x9a3c2087a63f6399,0x36ac54e2f678864b, + 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, + 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, + 0x969eb7c47859e743,0x9f644ae5a4b1b325, + 0xbc4665b596706114,0x873d5d9f0dde1fee, + 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, + 0x9316ff75dd87cbd8,0x9a7f12442d588f2, + 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, + 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, + 0x8fa475791a569d10,0xf96e017d694487bc, + 0xb38d92d760ec4455,0x37c981dcc395a9ac, + 0xe070f78d3927556a,0x85bbe253f47b1417, + 0x8c469ab843b89562,0x93956d7478ccec8e, + 0xaf58416654a6babb,0x387ac8d1970027b2, + 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, + 0x88fcf317f22241e2,0x441fece3bdf81f03, + 0xab3c2fddeeaad25a,0xd527e81cad7626c3, + 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, + 0x85c7056562757456,0xf6872d5667844e49, + 0xa738c6bebb12d16c,0xb428f8ac016561db, + 0xd106f86e69d785c7,0xe13336d701beba52, + 0x82a45b450226b39c,0xecc0024661173473, + 0xa34d721642b06084,0x27f002d7f95d0190, + 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, + 0xff290242c83396ce,0x7e67047175a15271, + 0x9f79a169bd203e41,0xf0062c6e984d386, + 0xc75809c42c684dd1,0x52c07b78a3e60868, + 0xf92e0c3537826145,0xa7709a56ccdf8a82, + 0x9bbcc7a142b17ccb,0x88a66076400bb691, + 0xc2abf989935ddbfe,0x6acff893d00ea435, + 0xf356f7ebf83552fe,0x583f6b8c4124d43, + 0x98165af37b2153de,0xc3727a337a8b704a, + 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, + 0xeda2ee1c7064130c,0x1162def06f79df73, + 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, + 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, + 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, + 0x910ab1d4db9914a0,0x1d9c9892400a22a2, + 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, + 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, + 0x8da471a9de737e24,0x5ceaecfed289e5d2, + 0xb10d8e1456105dad,0x7425a83e872c5f47, + 0xdd50f1996b947518,0xd12f124e28f77719, + 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, + 0xace73cbfdc0bfb7b,0x636cc64d1001550b, + 0xd8210befd30efa5a,0x3c47f7e05401aa4e, + 0x8714a775e3e95c78,0x65acfaec34810a71, + 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, + 0xd31045a8341ca07c,0x1ede48111209a050, + 0x83ea2b892091e44d,0x934aed0aab460432, + 0xa4e4b66b68b65d60,0xf81da84d5617853f, + 0xce1de40642e3f4b9,0x36251260ab9d668e, + 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, + 0xa1075a24e4421730,0xb24cf65b8612f81f, + 0xc94930ae1d529cfc,0xdee033f26797b627, + 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, + 0x9d412e0806e88aa5,0x8e1f289560ee864e, + 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, + 0xf5b5d7ec8acb58a2,0xae10af696774b1db, + 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, + 0xbff610b0cc6edd3f,0x17fd090a58d32af3, + 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, + 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, + 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, + 0xea53df5fd18d5513,0x84c86189216dc5ed, + 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, + 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, + 0xe4d5e82392a40515,0xfabaf3feaa5334a, + 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, + 0xb2c71d5bca9023f8,0x743e20e9ef511012, + 0xdf78e4b2bd342cf6,0x914da9246b255416, + 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, + 0xae9672aba3d0c320,0xa184ac2473b529b1, + 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, + 0x8865899617fb1871,0x7e2fa67c7a658892, + 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, + 0xd51ea6fa85785631,0x552a74227f3ea565, + 0x8533285c936b35de,0xd53a88958f87275f, + 0xa67ff273b8460356,0x8a892abaf368f137, + 0xd01fef10a657842c,0x2d2b7569b0432d85, + 0x8213f56a67f6b29b,0x9c3b29620e29fc73, + 0xa298f2c501f45f42,0x8349f3ba91b47b8f, + 0xcb3f2f7642717713,0x241c70a936219a73, + 0xfe0efb53d30dd4d7,0xed238cd383aa0110, + 0x9ec95d1463e8a506,0xf4363804324a40aa, + 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, + 0xf81aa16fdc1b81da,0xdd94b7868e94050a, + 0x9b10a4e5e9913128,0xca7cf2b4191c8326, + 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, + 0xf24a01a73cf2dccf,0xbc633b39673c8cec, + 0x976e41088617ca01,0xd5be0503e085d813, + 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, + 0xec9c459d51852ba2,0xddf8e7d60ed1219e, + 0x93e1ab8252f33b45,0xcabb90e5c942b503, + 0xb8da1662e7b00a17,0x3d6a751f3b936243, + 0xe7109bfba19c0c9d,0xcc512670a783ad4, + 0x906a617d450187e2,0x27fb2b80668b24c5, + 0xb484f9dc9641e9da,0xb1f9f660802dedf6, + 0xe1a63853bbd26451,0x5e7873f8a0396973, + 0x8d07e33455637eb2,0xdb0b487b6423e1e8, + 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, + 0xdc5c5301c56b75f7,0x7641a140cc7810fb, + 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, + 0xac2820d9623bf429,0x546345fa9fbdcd44, + 0xd732290fbacaf133,0xa97c177947ad4095, + 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, + 0xa81f301449ee8c70,0x5c68f256bfff5a74, + 0xd226fc195c6a2f8c,0x73832eec6fff3111, + 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, + 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, + 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, + 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, + 0xa0555e361951c366,0xd7e105bcc332621f, + 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, + 0xfa856334878fc150,0xb14f98f6f0feb951, + 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, + 0xc3b8358109e84f07,0xa862f80ec4700c8, + 0xf4a642e14c6262c8,0xcd27bb612758c0fa, + 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, + 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, + 0xeeea5d5004981478,0x1858ccfce06cac74, + 0x95527a5202df0ccb,0xf37801e0c43ebc8, + 0xbaa718e68396cffd,0xd30560258f54e6ba, + 0xe950df20247c83fd,0x47c6b82ef32a2069, + 0x91d28b7416cdd27e,0x4cdc331d57fa5441, + 0xb6472e511c81471d,0xe0133fe4adf8e952, + 0xe3d8f9e563a198e5,0x58180fddd97723a6, + 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; +}; + +template +constexpr uint64_t powers_template::power_of_five_128[number_of_entries]; + +using powers = powers_template<>; + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H +#define FASTFLOAT_DECIMAL_TO_BINARY_H + +#include +#include +#include +#include +#include +#include + +namespace fast_float { + +// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating +// the result, with the "high" part corresponding to the most significant bits and the +// low part corresponding to the least significant bits. +// +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +value128 compute_product_approximation(int64_t q, uint64_t w) { + const int index = 2 * int(q - powers::smallest_power_of_five); + // For small values of q, e.g., q in [0,27], the answer is always exact because + // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + // gives the exact answer. + value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); + static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); + constexpr uint64_t precision_mask = (bit_precision < 64) ? + (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) + : uint64_t(0xFFFFFFFFFFFFFFFF); + if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) + // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. + value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); + firstproduct.low += secondproduct.high; + if(secondproduct.high > firstproduct.low) { + firstproduct.high++; + } + } + return firstproduct; +} + +namespace detail { +/** + * For q in (0,350), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * floor(p) + q + * where + * p = log(5**q)/log(2) = q * log(5)/log(2) + * + * For negative values of q in (-400,0), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * -ceil(p) + q + * where + * p = log(5**-q)/log(2) = -q * log(5)/log(2) + */ + constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { + return (((152170 + 65536) * q) >> 16) + 63; + } +} // namespace detail + +// create an adjusted mantissa, biased by the invalid power2 +// for significant digits already multiplied by 10 ** q. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { + int hilz = int(w >> 63) ^ 1; + adjusted_mantissa answer; + answer.mantissa = w << hilz; + int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); + answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias); + return answer; +} + +// w * 10 ** q, without rounding the representation up. +// the power2 in the exponent will be adjusted by invalid_am_bias. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept { + int lz = leading_zeroes(w); + w <<= lz; + value128 product = compute_product_approximation(q, w); + return compute_error_scaled(q, product.high, lz); +} + +// w * 10 ** q +// The returned value should be a valid ieee64 number that simply need to be packed. +// However, in some very rare cases, the computation will fail. In such cases, we +// return an adjusted_mantissa with a negative power of 2: the caller should recompute +// in such cases. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { + adjusted_mantissa answer; + if ((w == 0) || (q < binary::smallest_power_of_ten())) { + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + if (q > binary::largest_power_of_ten()) { + // we want to get infinity: + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. + + // We want the most significant bit of i to be 1. Shift if needed. + int lz = leading_zeroes(w); + w <<= lz; + + // The required precision is binary::mantissa_explicit_bits() + 3 because + // 1. We need the implicit bit + // 2. We need an extra bit for rounding purposes + // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) + + value128 product = compute_product_approximation(q, w); + // The computed 'product' is always sufficient. + // Mathematical proof: + // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to appear) + // See script/mushtak_lemire.py + + // The "compute_product_approximation" function can be slightly slower than a branchless approach: + // value128 product = compute_product(q, w); + // but in practice, we can win big with the compute_product_approximation if its additional branch + // is easily predicted. Which is best is data specific. + int upperbit = int(product.high >> 63); + + answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + + answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent()); + if (answer.power2 <= 0) { // we have a subnormal? + // Here have that answer.power2 <= 0 so -answer.power2 >= 0 + if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + // next line is safe because -answer.power2 + 1 < 64 + answer.mantissa >>= -answer.power2 + 1; + // Thankfully, we can't have both "round-to-even" and subnormals because + // "round-to-even" only occurs for powers close to 0. + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + // There is a weird scenario where we don't have a subnormal but just. + // Suppose we start with 2.2250738585072013e-308, we end up + // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal + // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round + // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer + // subnormal, but we can only know this after rounding. + // So we only declare a subnormal if we are smaller than the threshold. + answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; + return answer; + } + + // usually, we round *up*, but if we fall right in between and and we have an + // even basis, we need to round down + // We are only concerned with the cases where 5**q fits in single 64-bit word. + if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && + ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! + // To be in-between two floats we need that in doing + // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + // ... we dropped out only zeroes. But if this happened, then we can go back!!! + if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { + answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up + } + } + + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { + answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); + answer.power2++; // undo previous addition + } + + answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); + if (answer.power2 >= binary::infinite_power()) { // infinity + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + } + return answer; +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_BIGINT_H +#define FASTFLOAT_BIGINT_H + +#include +#include +#include +#include + + +namespace fast_float { + +// the limb width: we want efficient multiplication of double the bits in +// limb, or for 64-bit limbs, at least 64-bit multiplication where we can +// extract the high and low parts efficiently. this is every 64-bit +// architecture except for sparc, which emulates 128-bit multiplication. +// we might have platforms where `CHAR_BIT` is not 8, so let's avoid +// doing `8 * sizeof(limb)`. +#if defined(FASTFLOAT_64BIT) && !defined(__sparc) +#define FASTFLOAT_64BIT_LIMB 1 +typedef uint64_t limb; +constexpr size_t limb_bits = 64; +#else +#define FASTFLOAT_32BIT_LIMB +typedef uint32_t limb; +constexpr size_t limb_bits = 32; +#endif + +typedef span limb_span; + +// number of bits in a bigint. this needs to be at least the number +// of bits required to store the largest bigint, which is +// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or +// ~3600 bits, so we round to 4000. +constexpr size_t bigint_bits = 4000; +constexpr size_t bigint_limbs = bigint_bits / limb_bits; + +// vector-like type that is allocated on the stack. the entire +// buffer is pre-allocated, and only the length changes. +template +struct stackvec { + limb data[size]; + // we never need more than 150 limbs + uint16_t length{0}; + + stackvec() = default; + stackvec(const stackvec &) = delete; + stackvec &operator=(const stackvec &) = delete; + stackvec(stackvec &&) = delete; + stackvec &operator=(stackvec &&other) = delete; + + // create stack vector from existing limb span. + FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { + FASTFLOAT_ASSERT(try_extend(s)); + } + + FASTFLOAT_CONSTEXPR14 limb& operator[](size_t index) noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return data[index]; + } + FASTFLOAT_CONSTEXPR14 const limb& operator[](size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return data[index]; + } + // index from the end of the container + FASTFLOAT_CONSTEXPR14 const limb& rindex(size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + size_t rindex = length - index - 1; + return data[rindex]; + } + + // set the length, without bounds checking. + FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { + length = uint16_t(len); + } + constexpr size_t len() const noexcept { + return length; + } + constexpr bool is_empty() const noexcept { + return length == 0; + } + constexpr size_t capacity() const noexcept { + return size; + } + // append item to vector, without bounds checking + FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { + data[length] = value; + length++; + } + // append item to vector, returning if item was added + FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { + if (len() < capacity()) { + push_unchecked(value); + return true; + } else { + return false; + } + } + // add items to the vector, from a span, without bounds checking + FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { + limb* ptr = data + length; + std::copy_n(s.ptr, s.len(), ptr); + set_len(len() + s.len()); + } + // try to add items to the vector, returning if items were added + FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { + if (len() + s.len() <= capacity()) { + extend_unchecked(s); + return true; + } else { + return false; + } + } + // resize the vector, without bounds checking + // if the new size is longer than the vector, assign value to each + // appended item. + FASTFLOAT_CONSTEXPR20 + void resize_unchecked(size_t new_len, limb value) noexcept { + if (new_len > len()) { + size_t count = new_len - len(); + limb* first = data + len(); + limb* last = first + count; + ::std::fill(first, last, value); + set_len(new_len); + } else { + set_len(new_len); + } + } + // try to resize the vector, returning if the vector was resized. + FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { + if (new_len > capacity()) { + return false; + } else { + resize_unchecked(new_len, value); + return true; + } + } + // check if any limbs are non-zero after the given index. + // this needs to be done in reverse order, since the index + // is relative to the most significant limbs. + FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { + while (index < len()) { + if (rindex(index) != 0) { + return true; + } + index++; + } + return false; + } + // normalize the big integer, so most-significant zero limbs are removed. + FASTFLOAT_CONSTEXPR14 void normalize() noexcept { + while (len() > 0 && rindex(0) == 0) { + length--; + } + } +}; + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +uint64_t empty_hi64(bool& truncated) noexcept { + truncated = false; + return 0; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept { + truncated = false; + int shl = leading_zeroes(r0); + return r0 << shl; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept { + int shl = leading_zeroes(r0); + if (shl == 0) { + truncated = r1 != 0; + return r0; + } else { + int shr = 64 - shl; + truncated = (r1 << shl) != 0; + return (r0 << shl) | (r1 >> shr); + } +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept { + return uint64_hi64(r0, truncated); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept { + uint64_t x0 = r0; + uint64_t x1 = r1; + return uint64_hi64((x0 << 32) | x1, truncated); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept { + uint64_t x0 = r0; + uint64_t x1 = r1; + uint64_t x2 = r2; + return uint64_hi64(x0, (x1 << 32) | x2, truncated); +} + +// add two small integers, checking for overflow. +// we want an efficient operation. for msvc, where +// we don't have built-in intrinsics, this is still +// pretty fast. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +limb scalar_add(limb x, limb y, bool& overflow) noexcept { + limb z; +// gcc and clang +#if defined(__has_builtin) + #if __has_builtin(__builtin_add_overflow) + if (!cpp20_and_in_constexpr()) { + overflow = __builtin_add_overflow(x, y, &z); + return z; + } + #endif +#endif + + // generic, this still optimizes correctly on MSVC. + z = x + y; + overflow = z < x; + return z; +} + +// multiply two small integers, getting both the high and low bits. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +limb scalar_mul(limb x, limb y, limb& carry) noexcept { +#ifdef FASTFLOAT_64BIT_LIMB + #if defined(__SIZEOF_INT128__) + // GCC and clang both define it as an extension. + __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); + carry = limb(z >> limb_bits); + return limb(z); + #else + // fallback, no native 128-bit integer multiplication with carry. + // on msvc, this optimizes identically, somehow. + value128 z = full_multiplication(x, y); + bool overflow; + z.low = scalar_add(z.low, carry, overflow); + z.high += uint64_t(overflow); // cannot overflow + carry = z.high; + return z.low; + #endif +#else + uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); + carry = limb(z >> limb_bits); + return limb(z); +#endif +} + +// add scalar value to bigint starting from offset. +// used in grade school multiplication +template +inline FASTFLOAT_CONSTEXPR20 +bool small_add_from(stackvec& vec, limb y, size_t start) noexcept { + size_t index = start; + limb carry = y; + bool overflow; + while (carry != 0 && index < vec.len()) { + vec[index] = scalar_add(vec[index], carry, overflow); + carry = limb(overflow); + index += 1; + } + if (carry != 0) { + FASTFLOAT_TRY(vec.try_push(carry)); + } + return true; +} + +// add scalar value to bigint. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +bool small_add(stackvec& vec, limb y) noexcept { + return small_add_from(vec, y, 0); +} + +// multiply bigint by scalar value. +template +inline FASTFLOAT_CONSTEXPR20 +bool small_mul(stackvec& vec, limb y) noexcept { + limb carry = 0; + for (size_t index = 0; index < vec.len(); index++) { + vec[index] = scalar_mul(vec[index], y, carry); + } + if (carry != 0) { + FASTFLOAT_TRY(vec.try_push(carry)); + } + return true; +} + +// add bigint to bigint starting from index. +// used in grade school multiplication +template +FASTFLOAT_CONSTEXPR20 +bool large_add_from(stackvec& x, limb_span y, size_t start) noexcept { + // the effective x buffer is from `xstart..x.len()`, so exit early + // if we can't get that current range. + if (x.len() < start || y.len() > x.len() - start) { + FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); + } + + bool carry = false; + for (size_t index = 0; index < y.len(); index++) { + limb xi = x[index + start]; + limb yi = y[index]; + bool c1 = false; + bool c2 = false; + xi = scalar_add(xi, yi, c1); + if (carry) { + xi = scalar_add(xi, 1, c2); + } + x[index + start] = xi; + carry = c1 | c2; + } + + // handle overflow + if (carry) { + FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); + } + return true; +} + +// add bigint to bigint. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +bool large_add_from(stackvec& x, limb_span y) noexcept { + return large_add_from(x, y, 0); +} + +// grade-school multiplication algorithm +template +FASTFLOAT_CONSTEXPR20 +bool long_mul(stackvec& x, limb_span y) noexcept { + limb_span xs = limb_span(x.data, x.len()); + stackvec z(xs); + limb_span zs = limb_span(z.data, z.len()); + + if (y.len() != 0) { + limb y0 = y[0]; + FASTFLOAT_TRY(small_mul(x, y0)); + for (size_t index = 1; index < y.len(); index++) { + limb yi = y[index]; + stackvec zi; + if (yi != 0) { + // re-use the same buffer throughout + zi.set_len(0); + FASTFLOAT_TRY(zi.try_extend(zs)); + FASTFLOAT_TRY(small_mul(zi, yi)); + limb_span zis = limb_span(zi.data, zi.len()); + FASTFLOAT_TRY(large_add_from(x, zis, index)); + } + } + } + + x.normalize(); + return true; +} + +// grade-school multiplication algorithm +template +FASTFLOAT_CONSTEXPR20 +bool large_mul(stackvec& x, limb_span y) noexcept { + if (y.len() == 1) { + FASTFLOAT_TRY(small_mul(x, y[0])); + } else { + FASTFLOAT_TRY(long_mul(x, y)); + } + return true; +} + +template +struct pow5_tables { + static constexpr uint32_t large_step = 135; + static constexpr uint64_t small_power_of_5[] = { + 1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL, + 1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL, + 6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL, + 3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL, + 2384185791015625UL, 11920928955078125UL, 59604644775390625UL, + 298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL, + }; +#ifdef FASTFLOAT_64BIT_LIMB + constexpr static limb large_power_of_5[] = { + 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, + 10482974169319127550UL, 198276706040285095UL}; +#else + constexpr static limb large_power_of_5[] = { + 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, + 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; +#endif +}; + +template +constexpr uint32_t pow5_tables::large_step; + +template +constexpr uint64_t pow5_tables::small_power_of_5[]; + +template +constexpr limb pow5_tables::large_power_of_5[]; + +// big integer type. implements a small subset of big integer +// arithmetic, using simple algorithms since asymptotically +// faster algorithms are slower for a small number of limbs. +// all operations assume the big-integer is normalized. +struct bigint : pow5_tables<> { + // storage of the limbs, in little-endian order. + stackvec vec; + + FASTFLOAT_CONSTEXPR20 bigint(): vec() {} + bigint(const bigint &) = delete; + bigint &operator=(const bigint &) = delete; + bigint(bigint &&) = delete; + bigint &operator=(bigint &&other) = delete; + + FASTFLOAT_CONSTEXPR20 bigint(uint64_t value): vec() { +#ifdef FASTFLOAT_64BIT_LIMB + vec.push_unchecked(value); +#else + vec.push_unchecked(uint32_t(value)); + vec.push_unchecked(uint32_t(value >> 32)); +#endif + vec.normalize(); + } + + // get the high 64 bits from the vector, and if bits were truncated. + // this is to get the significant digits for the float. + FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool& truncated) const noexcept { +#ifdef FASTFLOAT_64BIT_LIMB + if (vec.len() == 0) { + return empty_hi64(truncated); + } else if (vec.len() == 1) { + return uint64_hi64(vec.rindex(0), truncated); + } else { + uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); + truncated |= vec.nonzero(2); + return result; + } +#else + if (vec.len() == 0) { + return empty_hi64(truncated); + } else if (vec.len() == 1) { + return uint32_hi64(vec.rindex(0), truncated); + } else if (vec.len() == 2) { + return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); + } else { + uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); + truncated |= vec.nonzero(3); + return result; + } +#endif + } + + // compare two big integers, returning the large value. + // assumes both are normalized. if the return value is + // negative, other is larger, if the return value is + // positive, this is larger, otherwise they are equal. + // the limbs are stored in little-endian order, so we + // must compare the limbs in ever order. + FASTFLOAT_CONSTEXPR20 int compare(const bigint& other) const noexcept { + if (vec.len() > other.vec.len()) { + return 1; + } else if (vec.len() < other.vec.len()) { + return -1; + } else { + for (size_t index = vec.len(); index > 0; index--) { + limb xi = vec[index - 1]; + limb yi = other.vec[index - 1]; + if (xi > yi) { + return 1; + } else if (xi < yi) { + return -1; + } + } + return 0; + } + } + + // shift left each limb n bits, carrying over to the new limb + // returns true if we were able to shift all the digits. + FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { + // Internally, for each item, we shift left by n, and add the previous + // right shifted limb-bits. + // For example, we transform (for u8) shifted left 2, to: + // b10100100 b01000010 + // b10 b10010001 b00001000 + FASTFLOAT_DEBUG_ASSERT(n != 0); + FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); + + size_t shl = n; + size_t shr = limb_bits - shl; + limb prev = 0; + for (size_t index = 0; index < vec.len(); index++) { + limb xi = vec[index]; + vec[index] = (xi << shl) | (prev >> shr); + prev = xi; + } + + limb carry = prev >> shr; + if (carry != 0) { + return vec.try_push(carry); + } + return true; + } + + // move the limbs left by `n` limbs. + FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { + FASTFLOAT_DEBUG_ASSERT(n != 0); + if (n + vec.len() > vec.capacity()) { + return false; + } else if (!vec.is_empty()) { + // move limbs + limb* dst = vec.data + n; + const limb* src = vec.data; + std::copy_backward(src, src + vec.len(), dst + vec.len()); + // fill in empty limbs + limb* first = vec.data; + limb* last = first + n; + ::std::fill(first, last, 0); + vec.set_len(n + vec.len()); + return true; + } else { + return true; + } + } + + // move the limbs left by `n` bits. + FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { + size_t rem = n % limb_bits; + size_t div = n / limb_bits; + if (rem != 0) { + FASTFLOAT_TRY(shl_bits(rem)); + } + if (div != 0) { + FASTFLOAT_TRY(shl_limbs(div)); + } + return true; + } + + // get the number of leading zeros in the bigint. + FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { + if (vec.is_empty()) { + return 0; + } else { +#ifdef FASTFLOAT_64BIT_LIMB + return leading_zeroes(vec.rindex(0)); +#else + // no use defining a specialized leading_zeroes for a 32-bit type. + uint64_t r0 = vec.rindex(0); + return leading_zeroes(r0 << 32); +#endif + } + } + + // get the number of bits in the bigint. + FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { + int lz = ctlz(); + return int(limb_bits * vec.len()) - lz; + } + + FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { + return small_mul(vec, y); + } + + FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { + return small_add(vec, y); + } + + // multiply as if by 2 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { + return shl(exp); + } + + // multiply as if by 5 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { + // multiply by a power of 5 + size_t large_length = sizeof(large_power_of_5) / sizeof(limb); + limb_span large = limb_span(large_power_of_5, large_length); + while (exp >= large_step) { + FASTFLOAT_TRY(large_mul(vec, large)); + exp -= large_step; + } +#ifdef FASTFLOAT_64BIT_LIMB + uint32_t small_step = 27; + limb max_native = 7450580596923828125UL; +#else + uint32_t small_step = 13; + limb max_native = 1220703125U; +#endif + while (exp >= small_step) { + FASTFLOAT_TRY(small_mul(vec, max_native)); + exp -= small_step; + } + if (exp != 0) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + // This is similar to https://github.com/llvm/llvm-project/issues/47746, + // except the workaround described there don't work here + FASTFLOAT_TRY( + small_mul(vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))) + ); + } + + return true; + } + + // multiply as if by 10 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { + FASTFLOAT_TRY(pow5(exp)); + return pow2(exp); + } +}; + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_DIGIT_COMPARISON_H +#define FASTFLOAT_DIGIT_COMPARISON_H + +#include +#include +#include +#include + + +namespace fast_float { + +// 1e0 to 1e19 +constexpr static uint64_t powers_of_ten_uint64[] = { + 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL, + 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL, + 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL, + 1000000000000000000UL, 10000000000000000000UL}; + +// calculate the exponent, in scientific notation, of the number. +// this algorithm is not even close to optimized, but it has no practical +// effect on performance: in order to have a faster algorithm, we'd need +// to slow down performance for faster algorithms, and this is still fast. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +int32_t scientific_exponent(parsed_number_string_t & num) noexcept { + uint64_t mantissa = num.mantissa; + int32_t exponent = int32_t(num.exponent); + while (mantissa >= 10000) { + mantissa /= 10000; + exponent += 4; + } + while (mantissa >= 100) { + mantissa /= 100; + exponent += 2; + } + while (mantissa >= 10) { + mantissa /= 10; + exponent += 1; + } + return exponent; +} + +// this converts a native floating-point number to an extended-precision float. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa to_extended(T value) noexcept { + using equiv_uint = typename binary_format::equiv_uint; + constexpr equiv_uint exponent_mask = binary_format::exponent_mask(); + constexpr equiv_uint mantissa_mask = binary_format::mantissa_mask(); + constexpr equiv_uint hidden_bit_mask = binary_format::hidden_bit_mask(); + + adjusted_mantissa am; + int32_t bias = binary_format::mantissa_explicit_bits() - binary_format::minimum_exponent(); + equiv_uint bits; +#if FASTFLOAT_HAS_BIT_CAST + bits = std::bit_cast(value); +#else + ::memcpy(&bits, &value, sizeof(T)); +#endif + if ((bits & exponent_mask) == 0) { + // denormal + am.power2 = 1 - bias; + am.mantissa = bits & mantissa_mask; + } else { + // normal + am.power2 = int32_t((bits & exponent_mask) >> binary_format::mantissa_explicit_bits()); + am.power2 -= bias; + am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; + } + + return am; +} + +// get the extended precision value of the halfway point between b and b+u. +// we are given a native float that represents b, so we need to adjust it +// halfway between b and b+u. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa to_extended_halfway(T value) noexcept { + adjusted_mantissa am = to_extended(value); + am.mantissa <<= 1; + am.mantissa += 1; + am.power2 -= 1; + return am; +} + +// round an extended-precision float to the nearest machine float. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +void round(adjusted_mantissa& am, callback cb) noexcept { + int32_t mantissa_shift = 64 - binary_format::mantissa_explicit_bits() - 1; + if (-am.power2 >= mantissa_shift) { + // have a denormal float + int32_t shift = -am.power2 + 1; + cb(am, std::min(shift, 64)); + // check for round-up: if rounding-nearest carried us to the hidden bit. + am.power2 = (am.mantissa < (uint64_t(1) << binary_format::mantissa_explicit_bits())) ? 0 : 1; + return; + } + + // have a normal float, use the default shift. + cb(am, mantissa_shift); + + // check for carry + if (am.mantissa >= (uint64_t(2) << binary_format::mantissa_explicit_bits())) { + am.mantissa = (uint64_t(1) << binary_format::mantissa_explicit_bits()); + am.power2++; + } + + // check for infinite: we could have carried to an infinite power + am.mantissa &= ~(uint64_t(1) << binary_format::mantissa_explicit_bits()); + if (am.power2 >= binary_format::infinite_power()) { + am.power2 = binary_format::infinite_power(); + am.mantissa = 0; + } +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept { + const uint64_t mask + = (shift == 64) + ? UINT64_MAX + : (uint64_t(1) << shift) - 1; + const uint64_t halfway + = (shift == 0) + ? 0 + : uint64_t(1) << (shift - 1); + uint64_t truncated_bits = am.mantissa & mask; + bool is_above = truncated_bits > halfway; + bool is_halfway = truncated_bits == halfway; + + // shift digits into position + if (shift == 64) { + am.mantissa = 0; + } else { + am.mantissa >>= shift; + } + am.power2 += shift; + + bool is_odd = (am.mantissa & 1) == 1; + am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +void round_down(adjusted_mantissa& am, int32_t shift) noexcept { + if (shift == 64) { + am.mantissa = 0; + } else { + am.mantissa >>= shift; + } + am.power2 += shift; +} +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void skip_zeros(UC const * & first, UC const * last) noexcept { + uint64_t val; + while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len()) { + ::memcpy(&val, first, sizeof(uint64_t)); + if (val != int_cmp_zeros()) { + break; + } + first += int_cmp_len(); + } + while (first != last) { + if (*first != UC('0')) { + break; + } + first++; + } +} + +// determine if any non-zero digits were truncated. +// all characters must be valid digits. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +bool is_truncated(UC const * first, UC const * last) noexcept { + // do 8-bit optimizations, can just compare to 8 literal 0s. + uint64_t val; + while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len()) { + ::memcpy(&val, first, sizeof(uint64_t)); + if (val != int_cmp_zeros()) { + return true; + } + first += int_cmp_len(); + } + while (first != last) { + if (*first != UC('0')) { + return true; + } + ++first; + } + return false; +} +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +bool is_truncated(span s) noexcept { + return is_truncated(s.ptr, s.ptr + s.len()); +} + + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void parse_eight_digits(const UC*& p, limb& value, size_t& counter, size_t& count) noexcept { + value = value * 100000000 + parse_eight_digits_unrolled(p); + p += 8; + counter += 8; + count += 8; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 +void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept { + value = value * 10 + limb(*p - UC('0')); + p++; + counter++; + count++; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void add_native(bigint& big, limb power, limb value) noexcept { + big.mul(power); + big.add(value); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 +void round_up_bigint(bigint& big, size_t& count) noexcept { + // need to round-up the digits, but need to avoid rounding + // ....9999 to ...10000, which could cause a false halfway point. + add_native(big, 10, 1); + count++; +} + +// parse the significant digits into a big integer +template +inline FASTFLOAT_CONSTEXPR20 +void parse_mantissa(bigint& result, parsed_number_string_t& num, size_t max_digits, size_t& digits) noexcept { + // try to minimize the number of big integer and scalar multiplication. + // therefore, try to parse 8 digits at a time, and multiply by the largest + // scalar value (9 or 19 digits) for each step. + size_t counter = 0; + digits = 0; + limb value = 0; +#ifdef FASTFLOAT_64BIT_LIMB + size_t step = 19; +#else + size_t step = 9; +#endif + + // process all integer digits. + UC const * p = num.integer.ptr; + UC const * pend = p + num.integer.len(); + skip_zeros(p, pend); + // process all digits, in increments of step per loop + while (p != pend) { + while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { + parse_eight_digits(p, value, counter, digits); + } + while (counter < step && p != pend && digits < max_digits) { + parse_one_digit(p, value, counter, digits); + } + if (digits == max_digits) { + // add the temporary value, then check if we've truncated any digits + add_native(result, limb(powers_of_ten_uint64[counter]), value); + bool truncated = is_truncated(p, pend); + if (num.fraction.ptr != nullptr) { + truncated |= is_truncated(num.fraction); + } + if (truncated) { + round_up_bigint(result, digits); + } + return; + } else { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + counter = 0; + value = 0; + } + } + + // add our fraction digits, if they're available. + if (num.fraction.ptr != nullptr) { + p = num.fraction.ptr; + pend = p + num.fraction.len(); + if (digits == 0) { + skip_zeros(p, pend); + } + // process all digits, in increments of step per loop + while (p != pend) { + while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { + parse_eight_digits(p, value, counter, digits); + } + while (counter < step && p != pend && digits < max_digits) { + parse_one_digit(p, value, counter, digits); + } + if (digits == max_digits) { + // add the temporary value, then check if we've truncated any digits + add_native(result, limb(powers_of_ten_uint64[counter]), value); + bool truncated = is_truncated(p, pend); + if (truncated) { + round_up_bigint(result, digits); + } + return; + } else { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + counter = 0; + value = 0; + } + } + } + + if (counter != 0) { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + } +} + +template +inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept { + FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); + adjusted_mantissa answer; + bool truncated; + answer.mantissa = bigmant.hi64(truncated); + int bias = binary_format::mantissa_explicit_bits() - binary_format::minimum_exponent(); + answer.power2 = bigmant.bit_length() - 64 + bias; + + round(answer, [truncated](adjusted_mantissa& a, int32_t shift) { + round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { + return is_above || (is_halfway && truncated) || (is_odd && is_halfway); + }); + }); + + return answer; +} + +// the scaling here is quite simple: we have, for the real digits `m * 10^e`, +// and for the theoretical digits `n * 2^f`. Since `e` is always negative, +// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. +// we then need to scale by `2^(f- e)`, and then the two significant digits +// are of the same magnitude. +template +inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept { + bigint& real_digits = bigmant; + int32_t real_exp = exponent; + + // get the value of `b`, rounded down, and get a bigint representation of b+h + adjusted_mantissa am_b = am; + // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type. + round(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); }); + T b; + to_float(false, am_b, b); + adjusted_mantissa theor = to_extended_halfway(b); + bigint theor_digits(theor.mantissa); + int32_t theor_exp = theor.power2; + + // scale real digits and theor digits to be same power. + int32_t pow2_exp = theor_exp - real_exp; + uint32_t pow5_exp = uint32_t(-real_exp); + if (pow5_exp != 0) { + FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); + } + if (pow2_exp > 0) { + FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); + } else if (pow2_exp < 0) { + FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); + } + + // compare digits, and use it to director rounding + int ord = real_digits.compare(theor_digits); + adjusted_mantissa answer = am; + round(answer, [ord](adjusted_mantissa& a, int32_t shift) { + round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool { + (void)_; // not needed, since we've done our comparison + (void)__; // not needed, since we've done our comparison + if (ord > 0) { + return true; + } else if (ord < 0) { + return false; + } else { + return is_odd; + } + }); + }); + + return answer; +} + +// parse the significant digits as a big integer to unambiguously round the +// the significant digits. here, we are trying to determine how to round +// an extended float representation close to `b+h`, halfway between `b` +// (the float rounded-down) and `b+u`, the next positive float. this +// algorithm is always correct, and uses one of two approaches. when +// the exponent is positive relative to the significant digits (such as +// 1234), we create a big-integer representation, get the high 64-bits, +// determine if any lower bits are truncated, and use that to direct +// rounding. in case of a negative exponent relative to the significant +// digits (such as 1.2345), we create a theoretical representation of +// `b` as a big-integer type, scaled to the same binary exponent as +// the actual digits. we then compare the big integer representations +// of both, and use that to direct rounding. +template +inline FASTFLOAT_CONSTEXPR20 +adjusted_mantissa digit_comp(parsed_number_string_t& num, adjusted_mantissa am) noexcept { + // remove the invalid exponent bias + am.power2 -= invalid_am_bias; + + int32_t sci_exp = scientific_exponent(num); + size_t max_digits = binary_format::max_digits(); + size_t digits = 0; + bigint bigmant; + parse_mantissa(bigmant, num, max_digits, digits); + // can't underflow, since digits is at most max_digits. + int32_t exponent = sci_exp + 1 - int32_t(digits); + if (exponent >= 0) { + return positive_digit_comp(bigmant, exponent); + } else { + return negative_digit_comp(bigmant, am, exponent); + } +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_PARSE_NUMBER_H +#define FASTFLOAT_PARSE_NUMBER_H + + +#include +#include +#include +#include + +namespace fast_float { + + +namespace detail { +/** + * Special case +inf, -inf, nan, infinity, -infinity. + * The case comparisons could be made much faster given that we know that the + * strings a null-free and fixed. + **/ +template +from_chars_result_t FASTFLOAT_CONSTEXPR14 +parse_infnan(UC const * first, UC const * last, T &value) noexcept { + from_chars_result_t answer{}; + answer.ptr = first; + answer.ec = std::errc(); // be optimistic + bool minusSign = false; + if (*first == UC('-')) { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here + minusSign = true; + ++first; + } +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if (*first == UC('+')) { + ++first; + } +#endif + if (last - first >= 3) { + if (fastfloat_strncasecmp(first, str_const_nan(), 3)) { + answer.ptr = (first += 3); + value = minusSign ? -std::numeric_limits::quiet_NaN() : std::numeric_limits::quiet_NaN(); + // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). + if(first != last && *first == UC('(')) { + for(UC const * ptr = first + 1; ptr != last; ++ptr) { + if (*ptr == UC(')')) { + answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) + break; + } + else if(!((UC('a') <= *ptr && *ptr <= UC('z')) || (UC('A') <= *ptr && *ptr <= UC('Z')) || (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) + break; // forbidden char, not nan(n-char-seq-opt) + } + } + return answer; + } + if (fastfloat_strncasecmp(first, str_const_inf(), 3)) { + if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, str_const_inf() + 3, 5)) { + answer.ptr = first + 8; + } else { + answer.ptr = first + 3; + } + value = minusSign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); + return answer; + } + } + answer.ec = std::errc::invalid_argument; + return answer; +} + +/** + * Returns true if the floating-pointing rounding mode is to 'nearest'. + * It is the default on most system. This function is meant to be inexpensive. + * Credit : @mwalcott3 + */ +fastfloat_really_inline bool rounds_to_nearest() noexcept { + // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return false; +#endif + // See + // A fast function to check your floating-point rounding mode + // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ + // + // This function is meant to be equivalent to : + // prior: #include + // return fegetround() == FE_TONEAREST; + // However, it is expected to be much faster than the fegetround() + // function call. + // + // The volatile keywoard prevents the compiler from computing the function + // at compile-time. + // There might be other ways to prevent compile-time optimizations (e.g., asm). + // The value does not need to be std::numeric_limits::min(), any small + // value so that 1 + x should round to 1 would do (after accounting for excess + // precision, as in 387 instructions). + static volatile float fmin = std::numeric_limits::min(); + float fmini = fmin; // we copy it so that it gets loaded at most once. + // + // Explanation: + // Only when fegetround() == FE_TONEAREST do we have that + // fmin + 1.0f == 1.0f - fmin. + // + // FE_UPWARD: + // fmin + 1.0f > 1 + // 1.0f - fmin == 1 + // + // FE_DOWNWARD or FE_TOWARDZERO: + // fmin + 1.0f == 1 + // 1.0f - fmin < 1 + // + // Note: This may fail to be accurate if fast-math has been + // enabled, as rounding conventions may not apply. + #ifdef FASTFLOAT_VISUAL_STUDIO + # pragma warning(push) + // todo: is there a VS warning? + // see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 + #elif defined(__clang__) + # pragma clang diagnostic push + # pragma clang diagnostic ignored "-Wfloat-equal" + #elif defined(__GNUC__) + # pragma GCC diagnostic push + # pragma GCC diagnostic ignored "-Wfloat-equal" + #endif + return (fmini + 1.0f == 1.0f - fmini); + #ifdef FASTFLOAT_VISUAL_STUDIO + # pragma warning(pop) + #elif defined(__clang__) + # pragma clang diagnostic pop + #elif defined(__GNUC__) + # pragma GCC diagnostic pop + #endif +} + +} // namespace detail + +template +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars(UC const * first, UC const * last, + T &value, chars_format fmt /*= chars_format::general*/) noexcept { + return from_chars_advanced(first, last, value, parse_options_t{fmt}); +} + +template +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars_advanced(UC const * first, UC const * last, + T &value, parse_options_t options) noexcept { + + static_assert (is_supported_float_type(), "only float and double are supported"); + static_assert (is_supported_char_type(), "only char, wchar_t, char16_t and char32_t are supported"); + + from_chars_result_t answer; +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default + while ((first != last) && fast_float::is_space(uint8_t(*first))) { + first++; + } +#endif + if (first == last) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + parsed_number_string_t pns = parse_number_string(first, last, options); + if (!pns.valid) { + if (options.format & chars_format::no_infnan) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } else { + return detail::parse_infnan(first, last, value); + } + } + + answer.ec = std::errc(); // be optimistic + answer.ptr = pns.lastmatch; + // The implementation of the Clinger's fast path is convoluted because + // we want round-to-nearest in all cases, irrespective of the rounding mode + // selected on the thread. + // We proceed optimistically, assuming that detail::rounds_to_nearest() returns + // true. + if (binary_format::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format::max_exponent_fast_path() && !pns.too_many_digits) { + // Unfortunately, the conventional Clinger's fast path is only possible + // when the system rounds to the nearest float. + // + // We expect the next branch to almost always be selected. + // We could check it first (before the previous branch), but + // there might be performance advantages at having the check + // be last. + if(!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { + // We have that fegetround() == FE_TONEAREST. + // Next is Clinger's fast path. + if (pns.mantissa <=binary_format::max_mantissa_fast_path()) { + value = T(pns.mantissa); + if (pns.exponent < 0) { value = value / binary_format::exact_power_of_ten(-pns.exponent); } + else { value = value * binary_format::exact_power_of_ten(pns.exponent); } + if (pns.negative) { value = -value; } + return answer; + } + } else { + // We do not have that fegetround() == FE_TONEAREST. + // Next is a modified Clinger's fast path, inspired by Jakub JelĂ­nek's proposal + if (pns.exponent >= 0 && pns.mantissa <=binary_format::max_mantissa_fast_path(pns.exponent)) { +#if defined(__clang__) || defined(FASTFLOAT_32BIT) + // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD + if(pns.mantissa == 0) { + value = pns.negative ? T(-0.) : T(0.); + return answer; + } +#endif + value = T(pns.mantissa) * binary_format::exact_power_of_ten(pns.exponent); + if (pns.negative) { value = -value; } + return answer; + } + } + } + adjusted_mantissa am = compute_float>(pns.exponent, pns.mantissa); + if(pns.too_many_digits && am.power2 >= 0) { + if(am != compute_float>(pns.exponent, pns.mantissa + 1)) { + am = compute_error>(pns.exponent, pns.mantissa); + } + } + // If we called compute_float>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0), + // then we need to go the long way around again. This is very uncommon. + if(am.power2 < 0) { am = digit_comp(pns, am); } + to_float(pns.negative, am, value); + // Test for over/underflow. + if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || am.power2 == binary_format::infinite_power()) { + answer.ec = std::errc::result_out_of_range; + } + return answer; +} + + +template +FASTFLOAT_CONSTEXPR20 +from_chars_result_t from_chars(UC const* first, UC const* last, T& value, int base) noexcept +{ + static_assert (is_supported_char_type(), "only char, wchar_t, char16_t and char32_t are supported"); + + from_chars_result_t answer; +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default + while ((first != last) && fast_float::is_space(uint8_t(*first))) { + first++; + } +#endif + if (first == last || base < 2 || base > 36) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + return parse_int_string(first, last, value, base); +} + +} // namespace fast_float + +#endif + diff --git a/ThirdParty.md b/ThirdParty.md index 534a0c6e0f..56dce36694 100644 --- a/ThirdParty.md +++ b/ThirdParty.md @@ -20,11 +20,12 @@ Name | Version [DirectXTK](https://github.com/microsoft/DirectXTK) | April 6, 2021 [DirectXMath](https://github.com/microsoft/DirectXMath) | January 2022 [DirectX Mesh Geometry Library](https://github.com/microsoft/DirectXMesh) | June 9, 2021 -[double-conversion](https://github.com/google/double-conversion) | v3.1.5 +[double-conversion](https://github.com/google/double-conversion) | v3.3.0 [Earcut](https://github.com/mapbox/earcut.hpp) | 2.2.2 [Easing Equations](http://robertpenner.com/easing/) | [EnumBitmask](https://github.com/Reputeless/EnumBitmask) | v1.0 [easyexif](https://github.com/mayanklahiri/easyexif) | +[fast_float](https://github.com/fastfloat/fast_float) | Version 6.0.0 [fmt](https://github.com/fmtlib/fmt) | 10.1.1 [Font Awesome Free](https://github.com/FortAwesome/Font-Awesome) | 5.15.2 [FreeType](https://www.freetype.org/) | 2.10.4 diff --git a/Web/CMake/BuildThirdParty.cmake b/Web/CMake/BuildThirdParty.cmake index af19dfa35a..0184ce14dd 100644 --- a/Web/CMake/BuildThirdParty.cmake +++ b/Web/CMake/BuildThirdParty.cmake @@ -84,8 +84,6 @@ target_sources(double_conversion ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc - ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc - ../Siv3D/src/ThirdParty/double-conversion/strtod.cc ) diff --git a/Web/CMakeLists.txt b/Web/CMakeLists.txt index 0eab40d17d..53534c136e 100644 --- a/Web/CMakeLists.txt +++ b/Web/CMakeLists.txt @@ -730,8 +730,6 @@ set(SIV3D_THIRDPARTY_SOURCES ../Siv3D/src/ThirdParty/double-conversion/double-to-string.cc ../Siv3D/src/ThirdParty/double-conversion/fast-dtoa.cc ../Siv3D/src/ThirdParty/double-conversion/fixed-dtoa.cc - ../Siv3D/src/ThirdParty/double-conversion/string-to-double.cc - ../Siv3D/src/ThirdParty/double-conversion/strtod.cc ../Siv3D/src/ThirdParty/easyexif/exif.cpp diff --git a/WindowsDesktop/Siv3D.vcxproj b/WindowsDesktop/Siv3D.vcxproj index 2b77cc487f..dc70a91e64 100644 --- a/WindowsDesktop/Siv3D.vcxproj +++ b/WindowsDesktop/Siv3D.vcxproj @@ -1424,16 +1424,14 @@ - - - + @@ -2849,11 +2847,6 @@ - - 4244;%(DisableSpecificWarnings) - 4244;%(DisableSpecificWarnings) - - diff --git a/WindowsDesktop/Siv3D.vcxproj.filters b/WindowsDesktop/Siv3D.vcxproj.filters index bbef06ad23..0f4234709a 100644 --- a/WindowsDesktop/Siv3D.vcxproj.filters +++ b/WindowsDesktop/Siv3D.vcxproj.filters @@ -49,9 +49,6 @@ {b4722747-7e40-41a3-a567-89aa12ca64ee} - - {29244e33-c97b-4389-bd56-3a82e7e2d72f} - {bf9a23a2-e0e7-4b79-9a43-6def99dc0916} @@ -1732,6 +1729,12 @@ {13c0dace-b441-4dab-9536-978f581759af} + + {b3e22ba3-df5d-44e4-ab5d-ee1cb2d4f037} + + + {dffabc2c-5a6d-4f2a-b4f9-d21859d0842a} + @@ -1767,42 +1770,6 @@ include\ThirdParty\fmt - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - src\Siv3D\Logger @@ -7821,6 +7788,36 @@ src\ThirdParty\zstd\common + + src\ThirdParty\fast_float + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + @@ -7850,30 +7847,6 @@ src\Siv3D\FormatFloat - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - - - src\ThirdParty\double-conversion - src\Siv3D\FormatInt @@ -11255,6 +11228,24 @@ src\ThirdParty\skia\src\core + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + + + src\ThirdParty\double-conversion + diff --git a/macOS/OpenSiv3D.xcodeproj/project.pbxproj b/macOS/OpenSiv3D.xcodeproj/project.pbxproj index f8c1d875f7..d0babfbf21 100644 --- a/macOS/OpenSiv3D.xcodeproj/project.pbxproj +++ b/macOS/OpenSiv3D.xcodeproj/project.pbxproj @@ -360,19 +360,14 @@ 2C4397962536163000F6AECD /* CShader_GL4.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C4397902536163000F6AECD /* CShader_GL4.cpp */; }; 2C439F472419D686001154C2 /* format-inl.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F452419D686001154C2 /* format-inl.h */; }; 2C439F482419D686001154C2 /* format.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F462419D686001154C2 /* format.cc */; }; - 2C439F77241DCEA9001154C2 /* string-to-double.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F63241DCEA9001154C2 /* string-to-double.h */; }; 2C439F78241DCEA9001154C2 /* utils.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F64241DCEA9001154C2 /* utils.h */; }; 2C439F79241DCEA9001154C2 /* bignum.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F65241DCEA9001154C2 /* bignum.cc */; }; 2C439F7A241DCEA9001154C2 /* fixed-dtoa.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F66241DCEA9001154C2 /* fixed-dtoa.h */; }; - 2C439F7B241DCEA9001154C2 /* string-to-double.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F67241DCEA9001154C2 /* string-to-double.cc */; }; 2C439F7C241DCEA9001154C2 /* bignum-dtoa.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F68241DCEA9001154C2 /* bignum-dtoa.h */; }; 2C439F7D241DCEA9001154C2 /* fixed-dtoa.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */; }; 2C439F7E241DCEA9001154C2 /* double-to-string.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6A241DCEA9001154C2 /* double-to-string.h */; }; - 2C439F7F241DCEA9001154C2 /* strtod.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6B241DCEA9001154C2 /* strtod.h */; }; 2C439F80241DCEA9001154C2 /* diy-fp.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6C241DCEA9001154C2 /* diy-fp.h */; }; - 2C439F81241DCEA9001154C2 /* strtod.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F6D241DCEA9001154C2 /* strtod.cc */; }; 2C439F82241DCEA9001154C2 /* cached-powers.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6E241DCEA9001154C2 /* cached-powers.h */; }; - 2C439F83241DCEA9001154C2 /* double-conversion.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C439F6F241DCEA9001154C2 /* double-conversion.h */; }; 2C439F84241DCEA9001154C2 /* fast-dtoa.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F70241DCEA9001154C2 /* fast-dtoa.cc */; }; 2C439F85241DCEA9001154C2 /* double-to-string.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F71241DCEA9001154C2 /* double-to-string.cc */; }; 2C439F86241DCEA9001154C2 /* cached-powers.cc in Sources */ = {isa = PBXBuildFile; fileRef = 2C439F72241DCEA9001154C2 /* cached-powers.cc */; }; @@ -778,6 +773,7 @@ 2C794B6425C4241800034D81 /* GL4Texture.hpp in Headers */ = {isa = PBXBuildFile; fileRef = 2C794B6225C4241800034D81 /* GL4Texture.hpp */; }; 2C794B6625C4FD0400034D81 /* plutovg-dash.c in Sources */ = {isa = PBXBuildFile; fileRef = 2C794B6525C4FD0400034D81 /* plutovg-dash.c */; }; 2C796EB125CA42130003B7EC /* libharfbuzz.a in Frameworks */ = {isa = PBXBuildFile; fileRef = 2C796EB025CA41DA0003B7EC /* libharfbuzz.a */; }; + 2C7A77932B3BF56400E40A53 /* fast_float.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C7A77922B3BF56400E40A53 /* fast_float.h */; }; 2C7CA7EE29DF0D3B00FEC104 /* SivSimpleTable.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C7CA7ED29DF0D3B00FEC104 /* SivSimpleTable.cpp */; }; 2C7CA7F229E43A0A00FEC104 /* SivTextAreaEditState.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2C7CA7F129E43A0A00FEC104 /* SivTextAreaEditState.cpp */; }; 2C7DE5DA261379FD00D7F031 /* gif_lib.h in Headers */ = {isa = PBXBuildFile; fileRef = 2C7DE5D9261379FD00D7F031 /* gif_lib.h */; }; @@ -2725,19 +2721,14 @@ 2C4397902536163000F6AECD /* CShader_GL4.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CShader_GL4.cpp; sourceTree = ""; }; 2C439F452419D686001154C2 /* format-inl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "format-inl.h"; sourceTree = ""; }; 2C439F462419D686001154C2 /* format.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = format.cc; sourceTree = ""; }; - 2C439F63241DCEA9001154C2 /* string-to-double.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "string-to-double.h"; sourceTree = ""; }; 2C439F64241DCEA9001154C2 /* utils.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = utils.h; sourceTree = ""; }; 2C439F65241DCEA9001154C2 /* bignum.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = bignum.cc; sourceTree = ""; }; 2C439F66241DCEA9001154C2 /* fixed-dtoa.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "fixed-dtoa.h"; sourceTree = ""; }; - 2C439F67241DCEA9001154C2 /* string-to-double.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "string-to-double.cc"; sourceTree = ""; }; 2C439F68241DCEA9001154C2 /* bignum-dtoa.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "bignum-dtoa.h"; sourceTree = ""; }; 2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "fixed-dtoa.cc"; sourceTree = ""; }; 2C439F6A241DCEA9001154C2 /* double-to-string.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "double-to-string.h"; sourceTree = ""; }; - 2C439F6B241DCEA9001154C2 /* strtod.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = strtod.h; sourceTree = ""; }; 2C439F6C241DCEA9001154C2 /* diy-fp.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "diy-fp.h"; sourceTree = ""; }; - 2C439F6D241DCEA9001154C2 /* strtod.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = strtod.cc; sourceTree = ""; }; 2C439F6E241DCEA9001154C2 /* cached-powers.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "cached-powers.h"; sourceTree = ""; }; - 2C439F6F241DCEA9001154C2 /* double-conversion.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "double-conversion.h"; sourceTree = ""; }; 2C439F70241DCEA9001154C2 /* fast-dtoa.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "fast-dtoa.cc"; sourceTree = ""; }; 2C439F71241DCEA9001154C2 /* double-to-string.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "double-to-string.cc"; sourceTree = ""; }; 2C439F72241DCEA9001154C2 /* cached-powers.cc */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = "cached-powers.cc"; sourceTree = ""; }; @@ -3233,6 +3224,7 @@ 2C794B6225C4241800034D81 /* GL4Texture.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = GL4Texture.hpp; sourceTree = ""; }; 2C794B6525C4FD0400034D81 /* plutovg-dash.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = "plutovg-dash.c"; sourceTree = ""; }; 2C796EB025CA41DA0003B7EC /* libharfbuzz.a */ = {isa = PBXFileReference; lastKnownFileType = archive.ar; name = libharfbuzz.a; path = ../Siv3D/lib/macOS/harfbuzz/libharfbuzz.a; sourceTree = ""; }; + 2C7A77922B3BF56400E40A53 /* fast_float.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = fast_float.h; sourceTree = ""; }; 2C7CA7EB29DF0D0800FEC104 /* SimpleTable.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = SimpleTable.hpp; sourceTree = ""; }; 2C7CA7ED29DF0D3B00FEC104 /* SivSimpleTable.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = SivSimpleTable.cpp; sourceTree = ""; }; 2C7CA7EF29E439E300FEC104 /* TextAreaEditState.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = TextAreaEditState.hpp; sourceTree = ""; }; @@ -6387,6 +6379,7 @@ 2C439F62241DCEA9001154C2 /* double-conversion */, 2C53C34A25613BCC0072831A /* Earcut */, 2CEC7DC225FA4DD900704B99 /* easyexif */, + 2C7A77912B3BF56400E40A53 /* fast_float */, 2C439F442419D686001154C2 /* fmt */, 2C43C80325C837F000D6D613 /* freetype */, 2CC5842426461D7900C33E9F /* gif_load */, @@ -6507,19 +6500,14 @@ 2C439F62241DCEA9001154C2 /* double-conversion */ = { isa = PBXGroup; children = ( - 2C439F63241DCEA9001154C2 /* string-to-double.h */, 2C439F64241DCEA9001154C2 /* utils.h */, 2C439F65241DCEA9001154C2 /* bignum.cc */, 2C439F66241DCEA9001154C2 /* fixed-dtoa.h */, - 2C439F67241DCEA9001154C2 /* string-to-double.cc */, 2C439F68241DCEA9001154C2 /* bignum-dtoa.h */, 2C439F69241DCEA9001154C2 /* fixed-dtoa.cc */, 2C439F6A241DCEA9001154C2 /* double-to-string.h */, - 2C439F6B241DCEA9001154C2 /* strtod.h */, 2C439F6C241DCEA9001154C2 /* diy-fp.h */, - 2C439F6D241DCEA9001154C2 /* strtod.cc */, 2C439F6E241DCEA9001154C2 /* cached-powers.h */, - 2C439F6F241DCEA9001154C2 /* double-conversion.h */, 2C439F70241DCEA9001154C2 /* fast-dtoa.cc */, 2C439F71241DCEA9001154C2 /* double-to-string.cc */, 2C439F72241DCEA9001154C2 /* cached-powers.cc */, @@ -7933,6 +7921,14 @@ path = Metal; sourceTree = ""; }; + 2C7A77912B3BF56400E40A53 /* fast_float */ = { + isa = PBXGroup; + children = ( + 2C7A77922B3BF56400E40A53 /* fast_float.h */, + ); + path = fast_float; + sourceTree = ""; + }; 2C7CA7EC29DF0D3B00FEC104 /* SimpleTable */ = { isa = PBXGroup; children = ( @@ -13895,7 +13891,6 @@ 2C423254242B19D100A16BCA /* egl_context.h in Headers */, 2C4AEF882635CACB00D36CFC /* tinyxml2.h in Headers */, 2C636E512657F7D300AF029F /* soloud_fader.h in Headers */, - 2C439F83241DCEA9001154C2 /* double-conversion.h in Headers */, 2CEFB4DB2AB858DB005EBD5F /* SkEventTracer.h in Headers */, 2C43C89425C837F100D6D613 /* svcfftl.h in Headers */, 2C6390FC2539ABAB0030F18E /* MetalVertexShader.hpp in Headers */, @@ -14066,7 +14061,6 @@ 2CEFB6882AB858DD005EBD5F /* SkOpCoincidence.h in Headers */, 2CEFB4762AB858DB005EBD5F /* SkFontMgr.h in Headers */, 2CFC212B25F7324F00C51D0D /* turbojpeg.h in Headers */, - 2C439F77241DCEA9001154C2 /* string-to-double.h in Headers */, 2CFC214C25F739B400C51D0D /* hb-draw.h in Headers */, 2CC584832648246900C33E9F /* ogg.h in Headers */, 2CEFB50D2AB858DC005EBD5F /* SkFixed.h in Headers */, @@ -14096,6 +14090,7 @@ 2CB18EA126B5A68700862C28 /* as_restore.h in Headers */, 2C43C86925C837F000D6D613 /* ftwinfnt.h in Headers */, 2CC8BBA328C7532F008C770A /* CEmpty.hpp in Headers */, + 2C7A77932B3BF56400E40A53 /* fast_float.h in Headers */, 2C636EAF2657F7D300AF029F /* darray.h in Headers */, 2C43C87025C837F000D6D613 /* ftheader.h in Headers */, 2C636E7A2657F7D300AF029F /* miniaudio.h in Headers */, @@ -14219,7 +14214,6 @@ 2C27A9EF256E359400756617 /* GL4SamplerState.hpp in Headers */, 2CEFB47C2AB858DB005EBD5F /* SkUnPreMultiply.h in Headers */, 2CEFB4D02AB858DB005EBD5F /* SkPathOps.h in Headers */, - 2C439F7F241DCEA9001154C2 /* strtod.h in Headers */, 2C13C8EC25B95ABA0054B968 /* DirectoryWatcherDetail.hpp in Headers */, 2C43C8C525C837F100D6D613 /* ftbdf.h in Headers */, 2C0A4D6C2566A855002A4B5E /* plutovg-private.h in Headers */, @@ -14731,7 +14725,6 @@ 2CC8BD8228C75331008C770A /* SivChildProcess.cpp in Sources */, 2C2AA37226009C74003F3EBC /* b2_mouse_joint.cpp in Sources */, 2C47B49024DD97F2008D83BE /* muParserBase.cpp in Sources */, - 2C439F81241DCEA9001154C2 /* strtod.cc in Sources */, 2C0A4D672566A855002A4B5E /* sw_ft_raster.c in Sources */, 2C27113E2A7EA6CF00BD4014 /* SivTrail.cpp in Sources */, 2C636E772657F7D300AF029F /* soloud_core_3d.cpp in Sources */, @@ -14927,7 +14920,6 @@ 2CC8BDEE28C75332008C770A /* SivResource.cpp in Sources */, 2C533742264E0EE600CE0F1B /* MP3Decoder.cpp in Sources */, 2CC8BC8C28C75330008C770A /* ScriptBezier2.cpp in Sources */, - 2C439F7B241DCEA9001154C2 /* string-to-double.cc in Sources */, 2C60AE7A248158A500277281 /* architecture_non_windows.cpp in Sources */, 2CC8BD8D28C75332008C770A /* SivPlane.cpp in Sources */, 2C794B5825C4080A00034D81 /* CTexture_GL4.cpp in Sources */,