-
Notifications
You must be signed in to change notification settings - Fork 8
/
interpreter.py
515 lines (424 loc) · 14.9 KB
/
interpreter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# Reference: https://github.com/Deep-Learning-Profiling-Tools/triton-viz/commit/434fa2000a211c9958d570b6369df3b41d93a97a
import inspect
import triton.language as tl
import numpy as np
from triton.runtime.interpreter import (
GridExecutor,
_implicit_cvt,
RESERVED_KWS,
interpreter_builder,
InterpretedFunction,
)
from triton.runtime.interpreter import _patch_lang as triton_patch_lang
from triton.runtime import JITFunction
from typing import Tuple, List, Optional
from contextlib import contextmanager
from functools import wraps
## Op
from dataclasses import dataclass, field
from typing import List, Tuple, Any
import traceback
import numpy.typing as npt
import numpy as np
@dataclass
class Op:
call_path: List[traceback.StackSummary] = field(init=False, default_factory=list)
def __post_init__(self):
self.call_path = traceback.extract_stack()[:-2]
clean_call_path = []
triton_frames = [
"triton/runtime",
"triton/language",
"interpreter.py",
]
for frame in self.call_path:
if not any(
triton_frame in frame.filename for triton_frame in triton_frames
):
clean_call_path.append(frame)
self.call_path = clean_call_path
@dataclass
class Store(Op):
ptr: int
shape: Tuple
offsets: npt.NDArray[np.int_]
access_masks: npt.NDArray[np.bool_]
invalid_access_masks: npt.NDArray[np.bool_]
original_offsets: npt.NDArray[np.int_]
original_masks: npt.NDArray[np.bool_]
@dataclass
class Load(Op):
ptr: int
shape: Tuple
offsets: npt.NDArray[np.int_]
access_masks: npt.NDArray[np.bool_]
invalid_access_masks: npt.NDArray[np.bool_]
original_offsets: npt.NDArray[np.int_]
original_masks: npt.NDArray[np.bool_]
@dataclass
class BinaryOp(Op):
op: str
input_shape: Tuple
output_shape: Tuple
@dataclass
class MakeRange(Op):
start: int
end: int
@dataclass
class ExpandDims(Op):
input_shape: Tuple
index: int
output_shape: Tuple
@dataclass
class Dot(Op):
input_shape: Tuple
other_shape: Tuple
output_shape: Tuple
@dataclass
class Reduce(Op):
input_shape: Tuple
index: int
op: Any
keep_dims: bool
output_shape: Tuple
@dataclass
class Tensor:
ptr: int
dtype: str
stride: Tuple
shape: Tuple
element_size: int
@dataclass
class Grid:
idx: Tuple
@dataclass
class Launch:
grid: Tuple
tensors: List[Tensor]
records: List
## Interpreter
def _patch_lang(fn):
triton_patch_lang(fn)
tl.sum = _create_reduce(tl.reduce, "sum")
tl.min = _create_reduce(tl.reduce, "min")
tl.max = _create_reduce(tl.reduce, "max")
def _unpatch_lang():
import importlib
import sys
if tl.__name__ in sys.modules:
importlib.reload(tl)
class RecordBuilder:
def __init__(self) -> None:
self.reset()
def reset(self):
self._launches: List[Launch] = []
self._sampling_grid_idx: Optional[Tuple] = None
self._grid_idx = (0, 0, 0)
self._grid_dim = (1, 1, 1)
@property
def launches(self):
return self._launches
def set_sampling_grid_idx(self, idx: Tuple):
self._sampling_grid_idx = idx
def set_grid_dim(self, nx, ny, nz):
self._grid_dim = (nx, ny, nz)
self._launches.append(Launch((nx, ny, nz), [], []))
def set_grid_idx(self, x, y, z):
assert x < self._grid_dim[0]
assert y < self._grid_dim[1]
assert z < self._grid_dim[2]
self._grid_idx = (x, y, z)
grid_record = Grid(self._grid_idx)
self.add_record(grid_record)
def add_tensor(self, data, dtype, shape=None, stride=None):
tensor = Tensor(data, shape, stride, dtype)
self._launches[-1].tensors.append(tensor)
def add_tensors(self, tensors):
self._launches[-1].tensors.extend(tensors)
def sort_tensor_handles(self):
# Sort tensor handles based on ptr
launch = self._launches[-1]
launch.tensors = sorted(launch.tensors, key=lambda x: x.ptr)
def get_tensor_ptr(self, ptr):
# From a give ptr, get where the original tensor is stored
# Tensors have been sorted by ptr
ret_idx = 0
for i in range(len(self._launches[-1].tensors)):
if ptr < self._launches[-1].tensors[i].ptr:
break
ret_idx = i
return self._launches[-1].tensors[ret_idx]
def add_record(self, record):
def _to_1d_grid(idx: Tuple):
# Assuming originally 1d, 2d, or 3d input
if len(idx) == 1:
return idx[0]
elif len(idx) == 2:
return idx[0] * self._grid_dim[1] + idx[1]
elif len(idx) == 3:
return (
idx[0] * self._grid_dim[1] * self._grid_dim[2]
+ idx[1] * self._grid_dim[2]
+ idx[2]
)
if not self._sampling_grid_idx or _to_1d_grid(
self._sampling_grid_idx
) == _to_1d_grid(self._grid_idx):
self._launches[-1].records.append(record)
record_builder = RecordBuilder()
def _check_storage_contiguous(tensor):
# Note that this is different from if a tensor is accessed contiguously, so we cannot use tensor.is_contiguous()
# 1. Sort strides from smallest to largest
# 2. If the tensor is contiguous, the stride product should be the same of the shape product of all previous dimensions
shape_prod = 1
indices = sorted(range(len(tensor.stride())), key=tensor.stride().__getitem__)
for i, index in enumerate(indices):
stride = tensor.stride(index)
shape = tensor.shape[index]
if i == 0 and stride != 1:
return False
if i != 0 and stride != shape_prod:
return False
shape_prod *= shape
return True
def _grid_executor_call(self, *args_dev, **kwargs):
# Removes reserved keywords from kwargs
kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS}
if kwargs.pop("warmup", False):
return
args_hst, kwargs_hst = self._init_args_hst(args_dev, kwargs)
# Remaps core language functions to interpreted ones
_patch_lang(self.fn)
# Prepare call arguments
args = inspect.getcallargs(self.fn, *args_hst, **kwargs_hst)
call_args = {}
tensors = []
for name, arg in args.items():
if name in self.constexprs:
call_args[name] = arg
else:
ret = _implicit_cvt(arg)
if hasattr(arg, "data_ptr"):
assert _check_storage_contiguous(
arg
), "triton-viz only supports contiguouly stored tensors for now"
tensors.append(
Tensor(
ret.handle.data[0],
ret.dtype,
arg.stride(),
arg.shape,
arg.element_size(),
)
)
call_args[name] = ret
call_args.pop("self", None)
# Iterate through grid
grid = self.grid(call_args) if callable(self.grid) else self.grid
assert len(grid) <= 3
grid = grid + (1,) * (3 - len(grid))
interpreter_builder.set_grid_dim(*grid)
record_builder.set_grid_dim(*grid)
record_builder.add_tensors(tensors)
record_builder.sort_tensor_handles()
for x in range(grid[0]):
for y in range(grid[1]):
for z in range(grid[2]):
interpreter_builder.set_grid_idx(x, y, z)
record_builder.set_grid_idx(x, y, z)
self.fn(**call_args)
# Copy arguments back to propagate side-effects
self._restore_args_dev(args_dev, args_hst, kwargs, kwargs_hst)
_unpatch_lang()
def _jit_function_call(self, *args, **kwargs):
triton_patch_lang(self.fn)
return self.fn(*args, **kwargs)
def check_out_of_bounds_access(ptrs, masks):
first_ptr = np.reshape(ptrs.data, (-1))[0]
tensor_ptr = record_builder.get_tensor_ptr(first_ptr)
offsets = ptrs.data - tensor_ptr.ptr
max_valid_offset = np.prod(tensor_ptr.shape) * tensor_ptr.element_size
valid_access_masks = (offsets >= 0) & (offsets < max_valid_offset)
invalid_access_masks = (~valid_access_masks) & masks.data
corrected_offsets = np.where(valid_access_masks, offsets, 0)
return (
tensor_ptr,
valid_access_masks & masks.data,
invalid_access_masks,
corrected_offsets,
offsets,
)
def _create_masked_load(fn):
@wraps(fn)
def wrapper(ptrs, masks, other, cache_modifier, eviction_policy, is_volatile):
(
tensor_ptr,
valid_access_masks,
invalid_access_masks,
corrected_offsets,
original_offsets,
) = check_out_of_bounds_access(ptrs, masks)
load_record = Load(
ptr=tensor_ptr.ptr,
shape=ptrs.data.shape,
offsets=corrected_offsets,
access_masks=valid_access_masks,
invalid_access_masks=invalid_access_masks,
original_offsets=original_offsets,
original_masks=masks.data,
)
record_builder.add_record(load_record)
return fn(
ptrs,
masks,
other,
cache_modifier,
eviction_policy,
is_volatile,
)
return wrapper
def _create_masked_store(fn):
@wraps(fn)
def wrapper(ptrs, value, masks, cache_modifier, eviction_policy):
(
tensor_ptr,
valid_access_masks,
invalid_access_masks,
corrected_offsets,
original_offsets,
) = check_out_of_bounds_access(ptrs, masks)
store_record = Store(
ptr=tensor_ptr.ptr,
shape=ptrs.data.shape,
offsets=corrected_offsets,
access_masks=valid_access_masks,
invalid_access_masks=invalid_access_masks,
original_offsets=original_offsets,
original_masks=masks.data,
)
record_builder.add_record(store_record)
return fn(ptrs, value, valid_access_masks, cache_modifier, eviction_policy)
return wrapper
def _create_make_range(fn):
@wraps(fn)
def wrapper(start, stop):
range_record = MakeRange(start=start, end=stop)
record_builder.add_record(range_record)
return fn(start, stop)
return wrapper
def _create_binary_op(fn):
@wraps(fn)
def wrapper(lhs, rhs, op):
ret = fn(lhs, rhs, op)
binary_op_record = BinaryOp(
op=op.__name__, input_shape=(lhs.data.shape), output_shape=ret.data.shape
)
record_builder.add_record(binary_op_record)
return ret
return wrapper
def _create_dot(fn):
@wraps(fn)
def wrapper(a, b, d, allow_tf32, maxNumImpreciseAcc):
ret = fn(a, b, d, allow_tf32, maxNumImpreciseAcc)
dot_record = Dot(
input_shape=(a.data.shape, b.data.shape),
other_shape=d.data.shape,
output_shape=ret.data.shape,
)
record_builder.add_record(dot_record)
return ret
return wrapper
def _create_expand_dims(fn):
@wraps(fn)
def wrapper(arg, axis):
ret = fn(arg, axis)
expand_dims_record = ExpandDims(
input_shape=arg.data.shape, index=axis, output_shape=ret.data.shape
)
record_builder.add_record(expand_dims_record)
return ret
return wrapper
def _create_reduce(fn, op_name: str):
@wraps(fn)
def wrapper(input, axis=None, keep_dims=False):
mapping = {
"max": tl.standard._elementwise_max,
"min": tl.standard._elementwise_min,
"sum": tl.standard._sum_combine,
}
ret = fn(input, axis=axis, combine_fn=mapping[op_name], keep_dims=keep_dims)
reduce_record = Reduce(
input_shape=input.handle.data.shape,
index=axis,
op=op_name,
keep_dims=keep_dims,
output_shape=ret.handle.data.shape,
)
record_builder.add_record(reduce_record)
return ret
return wrapper
@contextmanager
def patch():
old_grid_executor_call = GridExecutor.__call__
old_jit_function_call = JITFunction.__call__
old_create_make_range = interpreter_builder.create_make_range
old_create_masked_load = interpreter_builder.create_masked_load
old_create_expand_dims = interpreter_builder.create_expand_dims
old_binary_op = interpreter_builder.binary_op
old_create_dot = interpreter_builder.create_dot
old_create_masked_store = interpreter_builder.create_masked_store
GridExecutor.__call__ = _grid_executor_call
JITFunction.__call__ = _jit_function_call
InterpretedFunction._rewrite_ast = lambda self: self.fn
interpreter_builder.create_make_range = _create_make_range(
interpreter_builder.create_make_range
)
interpreter_builder.create_masked_load = _create_masked_load(
interpreter_builder.create_masked_load
)
interpreter_builder.create_expand_dims = _create_expand_dims(
interpreter_builder.create_expand_dims
)
interpreter_builder.binary_op = _create_binary_op(interpreter_builder.binary_op)
interpreter_builder.create_dot = _create_dot(interpreter_builder.create_dot)
interpreter_builder.create_masked_store = _create_masked_store(
interpreter_builder.create_masked_store
)
try:
yield
finally:
GridExecutor.__call__ = old_grid_executor_call
JITFunction.__call__ = old_jit_function_call
interpreter_builder.create_make_range = old_create_make_range
interpreter_builder.create_masked_load = old_create_masked_load
interpreter_builder.create_expand_dims = old_create_expand_dims
interpreter_builder.binary_op = old_binary_op
interpreter_builder.create_dot = old_create_dot
interpreter_builder.create_masked_store = old_create_masked_store
## Collect
def collect_grid():
for launch in record_builder.launches[-1:]:
records, tensor_table, failures, access_offsets = collect_launch(launch)
return records, tensor_table, failures, access_offsets
def collect_launch(launch):
tensor_table = {}
for i, t in enumerate(launch.tensors):
tensor_table[t.ptr] = (t, i)
failures = {}
access_offsets = {}
all_grids = {}
last_grid = None
program_records = []
for r in launch.records:
if isinstance(r, Grid):
if last_grid is not None:
all_grids[last_grid.idx] = program_records
program_records = []
last_grid = r
program_records.append(r)
if isinstance(r, (Store, Load)):
access_offsets[last_grid.idx] = r.original_offsets
if (r.invalid_access_masks & r.original_masks).any():
failures[last_grid.idx] = ~(r.invalid_access_masks & r.original_masks)
all_grids[last_grid.idx] = program_records
return all_grids, tensor_table, failures, access_offsets