-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeries_Functions.py
684 lines (507 loc) · 20.8 KB
/
Series_Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import math
from arch import arch_model
from arch.__future__ import reindexing
from arch.univariate import arch_model, ConstantMean, GARCH, Normal,StudentsT
from typing import Tuple
from scipy.optimize import minimize
from scipy.stats import norm,t,skew,kurtosis,jarque_bera
from statsmodels.tsa.stattools import adfuller
import statsmodels.api as sm
from statistics import NormalDist
import os
def get_data(ticker: str,start:str='2007-01-01',end:str='2022-01-01')->pd.DataFrame:
"""
Download the data for the given ticker symbol from Yahoo Finance
Parameters
----------
ticker : str
The ticker symbol of the stock
start : str, optional
The start date of the period, by default '2007-01-01'
end : str, optional
The end date of the period, by default '2022-01-01'
Returns
-------
historical_price : pd.DataFrame
The historical price of the stock
"""
# Download the data using yahoo finance
ticker = yf.Ticker(ticker)
historical_price = ticker.history(period='max')
# Keep only the closing price
historical_price = historical_price['Close']
# Select the period from start to end
historical_price = historical_price[start:end]
return historical_price
def get_returns(data: pd.DataFrame)->pd.Series:
"""
Compute the returns for the given data
Parameters
----------
data : pd.DataFrame
The data for which we want to compute the returns
Returns
-------
returns : pd.Series
The returns for the given data
"""
# We drop the first line because it is NaN
return data.pct_change().dropna()
def plot_returns(data: pd.DataFrame, ticker: str=None)->None:
"""
Plot the returns for the given data
Parameters
----------
data : pd.DataFrame
The data for which we want to plot the returns
ticker : str, optional
The ticker symbol of the stock, by default None
Returns
-------
None
"""
if ticker == None:
title = "Returns"
else:
title = f"Returns for {ticker}"
# Compute the average of the returns
average = data.mean()
# Plot the returns
data.plot(label='Returns')
# Plot the mean
plt.axhline(average, color='red', linestyle='dashed', linewidth=3, label = 'Average return')
# Change the y axis to percentage
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter())
# Axis labels
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('Returns',fontweight='bold')
plt.title(label=title,fontweight='bold')
plt.legend()
plt.show()
return None
def weighted_hs_var(returns:pd.DataFrame,confidence_level:int=95,window:int=250,ticker:str=None,disp:bool=True,l:float=0.96)->pd.DataFrame:
"""
Estimation of the Value at Risk (VaR) using the Weighted Historical Simulation method with a rolling window
Parameters
----------
returns : pd.DataFrame
The returns for which we want to estimate the VaR
confidence_level : int
The confidence level for which we want to estimate the VaR
window : int
The size of the rolling window
ticker : str, optional
The ticker symbol of the stock, by default None
disp : bool, optional
If True, the returns and the VaR are plotted on the same graph, by default True
l : float, optional
The lambda parameter for the Age-weighted, by default 0.96
Returns
-------
VaR : pd.DataFrame
The HS-VaR and Age-Weighted HS-VaR for the given returns
"""
if ticker == None:
title = "Returns with Weighted HS VaR"
titleVaR = "VaR with Weighted HS VaR"
else:
title = f"Returns for {ticker} with Weighted HS VaR"
titleVaR = f"VaR for {ticker} with Weighted HS VaR"
VaR = pd.DataFrame(columns=['HS-VaR',"AWHS-VaR"], index=returns.index)
for i in range(returns.shape[0] - window + 1):
# Select the returns and the weights for the current window
current = pd.DataFrame(returns.iloc[i:i + window].values,columns=["Returns"]).reset_index(drop=True)
current["Weights"] = np.sort([((1-l)*l**(i-1))/(1-l**window) for i in range(1,window+1)])
# Sort the returns and the weights in non-ascending order and compute the cumulative sum of the weights
sorted_current = current.sort_values(by="Returns",ascending=False)
sorted_current["Cumsum"] = sorted_current["Weights"].cumsum()
sorted_current = sorted_current.reset_index(drop=True)
# Compute the index of the quantile corresponding to the confidence level
quantile_index = int((confidence_level / 100) * sorted_current.shape[0])
agquantile_index = ((sorted_current['Cumsum'] > 0.95)).idxmax()
# Select the return corresponding to the quantile index
hsvar = sorted_current["Returns"].iloc[quantile_index]
aghsvar = sorted_current["Returns"].iloc[agquantile_index]
# Store the VaR in the dataframe
VaR['HS-VaR'].iloc[i + window - 1] = hsvar
VaR['AWHS-VaR'].iloc[i + window - 1] = aghsvar
if disp == True:
# Plot the returns and the VaR on the same graph
returns.plot(label='Returns')
plt.plot(VaR['HS-VaR'], color='red', linewidth=1.5, label = f'HS-VaR {confidence_level}%')
plt.plot(VaR['AWHS-VaR'], color='black', linewidth=1.5, label = f'Age-Weighted HS-VaR {confidence_level}%')
# change the bounds of the y axis
plt.ylim(-0.3, 0.3)
plt.title(label=title,fontweight='bold')
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('Returns',fontweight='bold')
plt.legend()
plt.show()
# Plot the VaR
plt.plot(VaR['HS-VaR'], color='red', linewidth=1.5, label = f'HS-VaR {confidence_level}%')
plt.plot(VaR['AWHS-VaR'], color='black', linewidth=1.5, label = f'Age-Weighted HS-VaR {confidence_level}%')
plt.title(label=titleVaR,fontweight='bold')
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('VaR',fontweight='bold')
plt.legend()
plt.show()
return VaR
else:
return VaR
### USELESS FUNCTIONS ###
def optimize_garch(returns: pd.DataFrame, bounds: list([int,int,int])):
"""
Find the best parameters p, d and q using the log likelihood function
Parameters
----------
returns : pd.DataFrame
The returns for which we want to find the best parameters
Returns
-------
p,d,q : Tuple[int,int,int]
The best parameters p, d and q
"""
# Convert the returns to a numpy array
returns = returns.values
# Initialize the parameters p and q
p,d,q=1,0,0
model = arch_model(returns, p=1,q=0, dist='Normal', rescale=False)
# Compute the log likelihood
model_fit = model.fit(disp='off')
likelihood = model_fit.loglikelihood
for a in range(1,bounds[0]):
for b in range(0,bounds[1]):
for c in range(0,bounds[2]):
# Fit the GARCH model
model = arch_model(returns,p=a,o=b,q=c,dist='Normal',rescale=False)
# Compute the log likelihood
model_fit = model.fit(disp='off')
if model_fit.loglikelihood<likelihood:
p,d,q
likelihood=model_fit.loglikelihood
return p,d,q
def garch_var(returns: pd.DataFrame,p:int,q:int,d:int,confidence_level:int=0.95,ticker:str=None,window:int=250,disp:bool=True)->pd.Series:
"""
Estimation of the Value at Risk (VaR) using the GARCH method with a rolling window
Parameters
----------
returns : pd.DataFrame
The returns for which we want to estimate the VaR
p : int
The order of the AR part of the GARCH model
q : int
The order of the MA part of the GARCH model
d : int
The order of the differencing part of the GARCH model
confidence_level : int
The confidence level for the VaR
ticker : str
The ticker of the asset for which we want to estimate the VaR
window : int
The size of the rolling window
disp : bool
If True, the returns and the VaR are plotted on the same graph
Returns
-------
VaR : pd.Series
The estimated VaR for the given confidence level
"""
if ticker == None:
title = "Returns with GARCH VaR"
titleVaR = "VaR with GARCH"
else:
title = f"Returns for {ticker} with GARCH VaR"
titleVaR = f"VaR for {ticker} with GARCH"
# Initialize the dataframe for the VaR
VaR = pd.DataFrame(columns=['VaR'], index=returns.index)
for i in range(returns.shape[0] - window + 1):
# Select the returns for the current window
current_returns = returns.iloc[i:i + window]
# Fit the GARCH model
model = arch_model(current_returns, p=p, q=q, dist='Normal', rescale=False)
model_fit = model.fit(disp='off')
# Compute the VaR for the current window
var = model_fit.forecast(horizon=1).variance.iloc[-1, 0] * norm.ppf((1-confidence_level/100))
# Store the VaR in the dataframe
VaR.iloc[i + window - 1] = - var
# Plot the returns and the VaR on the same graph
returns.plot(label='Returns')
plt.plot(VaR, color='red', linestyle='dashed', linewidth=3, label = f'VaR {confidence_level}%')
if disp == True:
# change the bounds of the y axis
plt.ylim(-0.3, 0.3)
plt.title(label=title,fontweight='bold')
plt.legend()
plt.show()
# Plot the VaR
VaR.plot(label=f'VaR {confidence_level}%', linewidth=1, color='red')
plt.title(label=titleVaR,fontweight='bold')
plt.legend()
plt.show()
return VaR.VaR
else:
return VaR.VaR
## END OF USELESS FUNCTIONS ##
def garch_var2(returns: pd.DataFrame,confidence_level:int=95,ticker:str=None,window:int=250,disp:bool=True)->pd.Series:
"""
Estimation of the Value at Risk (VaR) using the GARCH method with a rolling window
Parameters
----------
returns : pd.DataFrame
The returns for which we want to estimate the VaR
confidence_level : int
The confidence level for the VaR
ticker : str
The ticker of the asset for which we want to estimate the VaR
window : int
The size of the rolling window
disp : bool
If True, the returns and the VaR are plotted on the same graph
Returns
-------
VaR : pd.Series
The estimated VaR for the given confidence level
"""
if ticker == None:
title = "Returns with GARCH VaR"
titleVaR = "VaR with GARCH"
else:
title = f"Returns for {ticker} with GARCH VaR"
titleVaR = f"VaR for {ticker} with GARCH"
# Initialize the dataframe for the VaR
VaR = pd.DataFrame(columns=['VaR'], index=returns.index)
sigma2 = pd.DataFrame(columns=['sigma_2'], index=returns.index)
for i in range(returns.shape[0] - window + 1):
# Select the returns for the current window
current_returns = returns.iloc[i:i + window]
# Create the GARCH model
model = arch_model(current_returns)
model = ConstantMean(current_returns)
model.volatility = GARCH(p=1, o=0, q=1)
model.distribution = Normal()
model = model.fit(disp='off')
aic = model.aic
# Choose between a Normal or a Student-t distribution
model2 = arch_model(current_returns)
model2 = ConstantMean(current_returns)
model2.volatility = GARCH(p=1, o=0, q=1)
model2.distribution = StudentsT()
model2 = model2.fit(disp='off')
aic2 = model2.aic
student = False
if aic2 < aic:
model = model2
student = True
if i == 0:
unc_variance = (model.params[1] / (1 - model.params[2] - model.params[3]))
sigma2.iloc[i+window-1] = model.params[1] + model.params[2]*(current_returns.iloc[window-1] - model.params[0])**2 + model.params[3]*unc_variance
else:
sigma2.iloc[i+window-1] = model.params[1] + model.params[2]*(current_returns.iloc[window-1] - model.params[0])**2 + model.params[3]*sigma2.iloc[i+window-2]
if student:
nu = round(model.params['nu'])
VaR.iloc[i+window-1] = model.params[0] + math.sqrt(sigma2.iloc[i+window-1])*t.ppf(1-confidence_level/100, nu)
else:
VaR.iloc[i+window-1] = model.params[0] + math.sqrt(sigma2.iloc[i+window-1])*NormalDist(mu=0, sigma=1).inv_cdf(1-confidence_level/100)
if disp == True:
# Plot the returns and the VaR on the same graph
returns.plot(label='Returns')
plt.plot(VaR, color='red', linestyle='dashed', linewidth=3, label = f'VaR {confidence_level}%')
# Change the bounds of the y axis
plt.ylim(-0.3, 0.3)
plt.title(label=title,fontweight='bold')
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('Returns',fontweight='bold')
plt.legend()
plt.show()
# Plot the VaR
VaR.plot(label=f'VaR {confidence_level}%', linewidth=1, color='red')
plt.title(label=titleVaR,fontweight='bold')
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('VaR',fontweight='bold')
plt.legend()
plt.show()
return VaR.VaR
else:
return VaR.VaR
def expected_shortfall(returns: pd.DataFrame, confidence_level: int, window: int=100, ticker: str=None, disp: bool=True)->pd.Series:
"""
Estimation of the Expected Shortfall (ES) using a rolling window
Parameters
----------
returns : pd.DataFrame
The returns for which we want to estimate the ES
confidence_level : int
The confidence level for which we want to estimate the ES
window : int
The size of the rolling window
ticker : str, optional
The ticker symbol of the stock, by default None
Returns
-------
ES : pd.Series
The estimated ES for the given confidence level
"""
if ticker == None:
title = "Returns with ES"
titleES = "ES"
else:
title = f"Returns for {ticker} with ES"
titleES = f"ES for {ticker}"
# Compute the VaR
VaR = weighted_hs_var(returns=returns, confidence_level=confidence_level, window=window, disp=False)
# Initialize the dataframe for the ES
ES = pd.DataFrame(columns=['ES'], index=returns.index)
for i in range(returns.shape[0] - window + 1):
# Select the returns for the current window
current_returns = returns.iloc[i:i + window]
# Select the Var for the current window
var = VaR.iloc[i]["AWHS-VaR"]
# Compute the ES for the current window
es = current_returns[current_returns <= var].mean()
# Store the ES in the dataframe
ES.iloc[i + window - 1] = es
if disp == True:
# Plot the returns and the ES on the same graph
returns.plot(label='Returns')
plt.plot(ES, color='red', linestyle='dashed', linewidth=3, label = f'ES {confidence_level}%')
# change the bounds of the y axis
plt.ylim(-0.3, 0.3)
plt.title(label=title,fontweight='bold')
plt.legend()
plt.show()
# Plot the ES
ES.plot(label = f'ES {confidence_level}%', linewidth=1, color='red')
plt.title(label=titleES,fontweight='bold')
plt.legend()
plt.show()
return ES.ES
else:
return ES.ES
def Dickey_Fuller(returns: pd.DataFrame, ticker: str=None,disp:bool=True)->float:
"""
Dickey-Fuller test for unit root
Parameters
----------
returns : pd.DataFrame
The returns for which we want to test the unit root
ticker : str, optional
The ticker symbol of the stock, by default None
disp : bool, optional
If True, the results of the test are printed, by default True
Returns
-------
float
The p-value of the test
"""
# transform the returns into a numpy array
returns = returns.values
# make the Dickey-Fuller test
test = adfuller(returns)
# Printing the statistical result of the adfuller test
if disp:
if ticker == None:
print('Augmented Dickey_fuller Statistic: %f' % test[0])
print('p-value: %f' % test[1])
else:
print(f'Augmented Dickey_fuller Statistic for {ticker}: %f' % test[0])
print('p-value: %f' % test[1])
# printing the critical values at different alpha levels.
print('Critical values at different levels:')
for k, v in test[4].items():
print('\t%s: %.3f' % (k, v))
return test[1]
def plot_comparison(VaR_NonParam: pd.DataFrame, VaR_Param: pd.DataFrame, ES: pd.DataFrame=None, ticker: str=None, confidence_level: int=95):
"""
Plot the VaR and ES for the non-parametric and parametric methods
Parameters
----------
VaR_NonParam : pd.DataFrame
The VaR for the non-parametric method
VaR_Param : pd.DataFrame
The VaR for the parametric method
ES : pd.DataFrame
The ES for the parametric method
ticker : str, optional
The ticker symbol of the stock, by default None
confidence_level : int, optional
The confidence level for which we want to plot the VaR and ES, by default 95
"""
if ticker == None:
title = f"VaR and ES for the non-parametric and parametric methods with a confidence level of {confidence_level}%"
else:
title = f"VaR and ES for the non-parametric and parametric methods for {ticker} with a confidence level of {confidence_level}%"
# Plot the HS-VaR for the non-parametric method
VaR_NonParam["HS-VaR"].plot(label=f'Historical Simulation VaR {confidence_level}%', linewidth=1, color='red')
VaR_NonParam["AWHS-VaR"].plot(label=f'Age Weighted Historical Simulation VaR {confidence_level}%', linewidth=1, color='black')
# Plot the VaR for the parametric method
VaR_Param.plot(label=f'GARCH VaR {confidence_level}%', linewidth=1, color='blue')
if ES is not None:
# Plot the ES for the parametric method
ES.plot(label=f'ES {confidence_level}%', linewidth=1, color='green')
plt.title(label=title,fontweight='bold')
plt.xlabel('Dates',fontweight='bold')
plt.ylabel('VaR and ES',fontweight='bold')
plt.legend()
plt.show()
def download_dataFrame(datas: dict, ticker: str):
"""
Download the dataFrame as a csv file
Parameters
----------
data : dict
The dict of dataFrame to download
ticker : str
The ticker symbol of the stock
"""
if not os.path.exists('./datas/'+ticker):
os.makedirs('./datas/'+ticker)
for key, value in datas.items():
value.to_csv('./datas/'+ticker+'/'+key+'.csv')
def dev_from_normality(returns: pd.DataFrame, ticker: str=None, disp: bool=True):
"""
Test the deviation from normality with the Jarque Bera test, the Kurtosis and the Skewness
Parameters
----------
returns : pd.DataFrame
The returns for which we want to test the unit root
ticker : str, optional
The ticker symbol of the stock, by default None
disp : bool, optional
If True, the results of the test are printed, by default True
"""
print(f"Skewness of the returns: {returns.skew()}")
print(f"Kurtosis of the returns: {returns.kurtosis()}")
print(f"Jarque Bera test: {jarque_bera(returns)[0]} with a p-value of {jarque_bera(returns)[1]}")
return None
def autocorr(returns: pd.DataFrame, ticker: str=None, lags=20):
"""
Plot the ACF of returns and squarred returns with the p-value of the Durbin-Watson test
Parameters
----------
returns : pd.DataFrame
The returns for which we want to test the unit root
ticker : str, optional
The ticker symbol of the stock, by default None
lags : int, optional
"""
# transform the returns into a numpy array
returns = returns.values
squarred_returns = returns**2
if ticker == None:
title = f"Autocorrelation function of the returns"
title2 = f"Autocorrelation function of the squarred returns"
else:
title = f"Autocorrelation function of the returns for {ticker}"
title2 = f"Autocorrelation function of the squarred returns for {ticker}"
# Plot the ACF of returns
sm.graphics.tsa.plot_acf(returns, lags=lags, title=title)
# Plot the ACF of squarred returns
sm.graphics.tsa.plot_acf(squarred_returns, lags=lags, title=title2)
# Print the value of the Durbin-Watson test
print(f"Durbin-Watson test for the returns: {sm.stats.stattools.durbin_watson(returns)}")
print(f"Durbin-Watson test for the squarred returns: {sm.stats.stattools.durbin_watson(squarred_returns)}")