-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
56 lines (46 loc) · 2 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
def train_model(data_path, labels_path, save_path, epochs=20):
print(f"Loading data from: {data_path}")
data = np.load(data_path)
print(f"Loading labels from: {labels_path}")
labels = np.load(labels_path)
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=0)
y_train = to_categorical(y_train, 43)
y_test = to_categorical(y_test, 43)
# code for creating a sequential CNN model
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_shape=X_train.shape[1:]))
model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(43, activation='softmax'))
print("Compiling the model")
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(f"Starting training for {epochs} epochs...")
history = model.fit(
X_train, y_train,
batch_size=32,
epochs=epochs,
validation_data=(X_test, y_test),
verbose=1
)
print(f"Training completed. Saving model to: {save_path}")
model.save(save_path)
print("Model saved successfully.")
return history
DATA_PATH = './training/data.npy'
LABELS_PATH = './training/labels.npy'
MODEL_SAVE_PATH = './traffic_sign_detection_model.keras'
EPOCHS = 20
history = train_model(DATA_PATH, LABELS_PATH, MODEL_SAVE_PATH, epochs=EPOCHS)