-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsanity_check.py
38 lines (26 loc) · 1.16 KB
/
sanity_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib.pyplot as plt
from utils import datasets, experiment_manager
import torch
def sanity_check_dataset(config_name: str, run_type: str = 'training', n_samples: int = 5):
s2_bands = [6, 2, 1]
s1_band = 0
cfg = experiment_manager.load_cfg(config_name)
ds = datasets.SpaceNet7S1S2Dataset(cfg, run_type, no_augmentations=False, disable_multiplier=True)
for i, index in enumerate(range(len(ds))):
item = ds.__getitem__(index)
x = item['x'].cpu()
s1_t1, s1_t2, s2_t1, s2_t2 = ds.split_item_x(x)
fig, axs = plt.subplots(2, 3, figsize=(15, 10))
axs[0, 0].imshow(s2_t1[:, :, s2_bands], vmin=0, vmax=0.3)
axs[0, 1].imshow(s2_t2[:, :, s2_bands], vmin=0, vmax=0.3)
axs[1, 0].imshow(s1_t1[:, :, s1_band], vmin=0, vmax=1, cmap='gray')
axs[1, 1].imshow(s1_t2[:, :, s1_band], vmin=0, vmax=1, cmap='gray')
y = item['y'].cpu().numpy().squeeze()
axs[0, 2].imshow(y, vmin=0, vmax=1, cmap='gray')
axs[1, 2].set_axis_off()
plt.show()
plt.close(fig)
if i >= n_samples:
break
if __name__ == '__main__':
sanity_check_dataset('dda_debug')