-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
146 lines (121 loc) · 5.97 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
from pathlib import Path
import numpy as np
from utils import geofiles, spacenet7_helpers
import matplotlib.pyplot as plt
def round_to_255(img):
img[img > 127] = 255
img[img <= 127] = 0
return img
def create_building_masks(aoi_id: str, save: bool = False):
print(f'creating building masks for {aoi_id}...')
aoi_folder = DATASET_FOLDER / 'train' / aoi_id
image_folder = aoi_folder / 'images_masked'
image_files = sorted([f for f in image_folder.glob('**/*')])
for i, image_file in enumerate(image_files):
# prepare empty mask
img, transform, crs = read_tif(image_file)
mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
mask_upsample = np.zeros((img.shape[0] * UPSAMPLE, img.shape[1] * UPSAMPLE, 1), dtype=np.uint8)
# load buildings polygons and fill mask
buildings_file = aoi_folder / 'labels_match_pix' / f'{image_file.stem}_Buildings.geojson'
feature_collection = load_json(buildings_file)
buildings = feature_collection['features']
for building in buildings:
# TODO: maybe multipolygons could cause problems when just using the first poly of a building
# list of building elements: first element is the building outline and others are holes
building_elements = building['geometry']['coordinates']
# filling in the whole building
building_outline = building_elements[0]
first_coord = building_outline[0]
# TODO: some coords are 3-d for some stupid reason, maybe fix?
if len(first_coord) == 3:
building_outline = [coord[:2] for coord in building_outline]
cv2.fillPoly(mask, [np.rint(np.array(building_outline)).astype(int)], 255, cv2.LINE_AA)
# Repeat on the upsampled mask
cv2.fillPoly(mask_upsample, [np.rint(np.array(building_outline) * UPSAMPLE).astype(int)], 255, cv2.LINE_AA)
# setting holes in building back to 0
# all building elements but the first one are considered holes
if len(building_elements) > 1:
for j in range(1, len(building_elements)):
building_hole = building_elements[j]
first_coord = building_hole[0]
if len(first_coord) == 3:
building_hole = [coord[:2] for coord in building_hole]
cv2.fillPoly(mask, [np.rint(np.array(building_hole)).astype(int)], 0, cv2.LINE_AA)
cv2.fillPoly(mask_upsample, [np.rint(np.array(building_hole) * UPSAMPLE).astype(int)], 0,
cv2.LINE_AA)
# TODO: Maybe have a different threshold here for better building separation
mask[mask < 255] = 0
mask_upsample[mask_upsample < 255] = 0
# saving created mask or show it
if save:
save_folder = aoi_folder / 'labels_raster'
save_folder.mkdir(exist_ok=True)
file = save_folder / f'{image_file.stem}_Buildings.tif'
write_tif(file, mask, transform, crs)
# Save upsampled images
save_folder = aoi_folder / f'labels_raster_X{UPSAMPLE}'
save_folder.mkdir(exist_ok=True)
file = save_folder / f'{image_file.stem}_Buildings.tif'
write_tif(file, mask_upsample, transform, crs)
else:
fig, axs = plt.subplots(1, 2, figsize=(10, 6))
axs[0].imshow(img)
axs[1].imshow(mask, interpolation='nearest')
for ax in axs:
ax.set_axis_off()
plt.show()
def create_metadata_file(spacenet7_path: str, dataset: str):
# container to store all dates of a time series (aoi_id = dates)
metadata = {}
for aoi_id in spacenet7_helpers.get_all_aoi_ids(spacenet7_path, dataset):
# container for all the timestamps (each image results in a timestamp)
timestamps = []
all_dates_sorted = spacenet7_helpers.get_all_dates(spacenet7_path, aoi_id, sort_by_date=True)
for i, date in enumerate(all_dates_sorted):
year, month = date
timestamp = {
'aoi_id': aoi_id,
'index': i,
'year': year,
'month': month,
'mask': spacenet7_helpers.is_masked(spacenet7_path, aoi_id, year, month),
'label': True if dataset == 'train' else False,
}
timestamps.append(timestamp)
metadata[aoi_id] = timestamps
file = Path(spacenet7_path) / f'metadata_{dataset}.json'
geofiles.write_json(file, metadata)
def dataset_split(spacenet7_path: str, dataset: str, seed: int = 42):
aoi_ids = spacenet7_helpers.get_all_aoi_ids(spacenet7_path, dataset)
np.random.seed(seed)
rand_numbers = np.random.rand(len(aoi_ids))
splits = [[], [], []]
for aoi_id, rand_number in zip(aoi_ids, rand_numbers):
if rand_number < 0.6:
splits[0].append(aoi_id)
elif rand_number < 0.8:
splits[1].append(aoi_id)
else:
splits[2].append(aoi_id)
for split, aoi_ids in zip(['training', 'validation', 'test'], splits):
print(split)
for aoi_id in aoi_ids:
print(f"'{aoi_id}',")
def metadata_argument_parser():
# https://docs.python.org/3/library/argparse.html#the-add-argument-method
parser = argparse.ArgumentParser(description="Experiment Args")
parser.add_argument('-s', "--spacenet7-dir", dest='spacenet7_dir', required=True, help="path to SpaceNet7 dataset")
parser.add_argument('-d', "--dataset", dest='dataset', required=True, help="dataset (train/test)")
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser
if __name__ == '__main__':
args = metadata_argument_parser().parse_known_args()[0]
create_metadata_file(args.spacenet7_dir, args.dataset)
# dataset_split(args.spacenet7_dir, args.dataset)