@@ -73,7 +73,7 @@ prob_jump_nonlinrxs = JumpProblemNetwork(rs, rates, tf, u0, prob, prob_data)
7373"""
7474 Oscillatory system, uses a mixture of jump types.
7575"""
76- rs = @reaction_network rnType begin
76+ rs = @reaction_network rnoscType begin
7777 0.01 , (X,Y,Z) --> 0
7878 hill (X,3. ,100. ,- 4 ), 0 --> Y
7979 hill (Y,3. ,100. ,- 4 ), 0 --> Z
@@ -141,3 +141,62 @@ tf = 100.
141141prob = DiscreteProblem (u0, (0. , tf), rates)
142142prob_jump_multistate = JumpProblemNetwork (rs, rates, tf, u0, prob,
143143 Dict (" specs_to_sym_name" => specs_sym_to_name, " rates_sym_to_idx" => rates_sym_to_idx, " params" => params))
144+
145+
146+ """
147+ Twenty-gene model from McCollum et al,
148+ "The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior"
149+ Comp. Bio. and Chem., 30, pg. 39-49 (2006).
150+ """
151+ # generate the network
152+ N = 10 # number of genes
153+ genenetwork = " @reaction_network twentgtype begin\n "
154+ for i in 1 : N
155+ genenetwork *= " \t 10.0, G$(2 * i- 1 ) --> G$(2 * i- 1 ) + M$(2 * i- 1 ) \n "
156+ genenetwork *= " \t 10.0, M$(2 * i- 1 ) --> M$(2 * i- 1 ) + P$(2 * i- 1 ) \n "
157+ genenetwork *= " \t 1.0, M$(2 * i- 1 ) --> 0\n "
158+ genenetwork *= " \t 1.0, P$(2 * i- 1 ) --> 0\n "
159+
160+ genenetwork *= " \t 5.0, G$(2 * i) --> G$(2 * i) + M$(2 * i) \n "
161+ genenetwork *= " \t 5.0, M$(2 * i) --> M$(2 * i) + P$(2 * i) \n "
162+ genenetwork *= " \t 1.0, M$(2 * i) --> 0\n "
163+ genenetwork *= " \t 1.0, P$(2 * i) --> 0\n "
164+
165+ genenetwork *= " \t 0.0001, G$(2 * i) + P$(2 * i- 1 ) --> G$(2 * i) _ind \n "
166+ genenetwork *= " \t 100., G$(2 * i) _ind --> G$(2 * i) _ind + M$(2 * i) \n "
167+ end
168+ genenetwork *= " end"
169+ rs = eval ( parse (genenetwork) )
170+ u0 = zeros (Int, length (rs. syms))
171+ for i = 1 : (2 * N)
172+ u0[findfirst (rs. syms, Symbol (" G$(i) " ))] = 1
173+ end
174+ tf = 2000.0
175+ prob = DiscreteProblem (u0, (0.0 , tf))
176+ prob_jump_twentygenes = JumpProblemNetwork (rs, nothing , tf, u0, prob, nothing )
177+
178+
179+ """
180+ Negative feedback autoregulatory gene expression model. Dimer is the repressor.
181+ Taken from Marchetti, Priami and Thanh,
182+ "Simulation Algorithms for Comptuational Systems Biology",
183+ Springer (2017).
184+ """
185+ rn = @reaction_network gnrdtype begin
186+ c1, G --> G + M
187+ c2, M --> M + P
188+ c3, M --> 0
189+ c4, P --> 0
190+ c5, 2 P --> P2
191+ c6, P2 --> 2 P
192+ c7, P2 + G --> P2G
193+ c8, P2G --> P2 + G
194+ end c1 c2 c3 c4 c5 c6 c7 c8
195+ rnpar = [.09 , .05 , .001 , .0009 , .00001 , .0005 , .005 , .9 ]
196+ varlabels = [" G" , " M" , " P" , " P2" ," P2G" ]
197+ u0 = [1000 , 0 , 0 , 0 ,0 ]
198+ tf = 4000.
199+ prob = DiscreteProblem (u0, (0.0 , tf), rnpar)
200+ prob_jump_dnadimer_repressor = JumpProblemNetwork (rn, rnpar, tf, u0, prob,
201+ Dict (" specs_names" => varlabels))
202+
0 commit comments