11# ## SDE Examples
22
3- f = (t,u) -> 1.01 * u
4- σ = (t,u) -> 0.87 * u
5- (p:: typeof (f))(:: Type{Val{:analytic}} ,t,u0,W) = u0.* exp .(0.63155 * t + 0.87 * W )
3+ f = (t,u) -> 1.01 u
4+ σ = (t,u) -> 0.87 u
5+ (p:: typeof (f))(:: Type{Val{:analytic}} ,t,u0,W) = u0.* exp .(0.63155 t + 0.87 W )
66"""
77```math
88du_t = βudt + αudW_t
@@ -16,6 +16,11 @@ u(t,u0,W_t)=u0\\exp((α-\\frac{β^2}{2})t+βW_t)
1616"""
1717prob_sde_linear = SDEProblem (f,σ,1 / 2 ,(0.0 ,1.0 ))
1818
19+ f = (t,u) -> 1.01 u
20+ σ = (t,u) -> 0.87 u
21+ (p:: typeof (f))(:: Type{Val{:analytic}} ,t,u0,W) = u0.* exp .(1.01 t+ 0.87 W)
22+ prob_sde_linear_stratonovich = SDEProblem (f,σ,1 / 2 ,(0.0 ,1.0 ))
23+
1924f = (t,u,du) -> begin
2025 for i = 1 : length (u)
2126 du[i] = 1.01 * u[i]
@@ -41,6 +46,18 @@ u(t,u0,W_t)=u0\\exp((α-\\frac{β^2}{2})t+βW_t)
4146"""
4247prob_sde_2Dlinear = SDEProblem (f,σ,ones (4 ,2 )/ 2 ,(0.0 ,1.0 ))
4348
49+ f = (t,u,du) -> begin
50+ for i = 1 : length (u)
51+ du[i] = 1.01 * u[i]
52+ end
53+ end
54+ σ = (t,u,du) -> begin
55+ for i in 1 : length (u)
56+ du[i] = .87 * u[i]
57+ end
58+ end
59+ (p:: typeof (f))(:: Type{Val{:analytic}} ,t,u0,W) = u0.* exp .(1.01 * t+ 0.87 * W)
60+ prob_sde_2Dlinear_stratonovich = SDEProblem (f,σ,ones (4 ,2 )/ 2 ,(0.0 ,1.0 ))
4461
4562f = (t,u) -> - .25 * u* (1 - u^ 2 )
4663σ = (t,u) -> .5 * (1 - u^ 2 )
@@ -142,6 +159,16 @@ with ``σ=10``, ``ρ=28``, ``β=8/3``, ``α=3.0`` and inital condition ``u0=[1;1
142159"""
143160prob_sde_lorenz = SDEProblem (f,σ,ones (3 ),(0.0 ,10.0 ))
144161
162+
163+ f = (t,u) -> (1 / 3 )* u^ (1 / 3 ) + 6 * u^ (2 / 3 )
164+ σ = (t,u) -> u^ (2 / 3 )
165+ (p:: typeof (f))(:: Type{Val{:analytic}} ,t,u0,W) = (2 t + 1 + W/ 3 )^ 3
166+ """
167+ Runge–Kutta methods for numerical solution of stochastic differential equations
168+ Tocino and Ardanuy
169+ """
170+ prob_sde_nltest = SDEProblem (f,σ,1.0 ,(0.0 ,10.0 ))
171+
145172function oval2ModelExample (;largeFluctuations= false ,useBigs= false ,noiseLevel= 1 )
146173 # Parameters
147174 J1_200= 3.
0 commit comments