-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllmserver.py
64 lines (51 loc) · 2.24 KB
/
llmserver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
""" Using Langchain Going to Generate a Server that can be used to shcedule meetings """
# Importing the required libraries
import os
from langchain.chat_models import ChatOpenAI
from typing import List, Dict, Any
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# from langchain.llms import OpenAI
from langchain.chains import SimpleSequentialChain
with open("OPEN_AI_KEY.txt", "r") as f:
OPEN_AI_KEY = f.read()
with open("SERP_API_KEY.txt", "r") as f:
SERP_API_KEY = f.read()
os.environ["OPENAI_API_KEY"] = OPEN_AI_KEY
os.environ["SERPAPI_API_KEY"] = SERP_API_KEY
class CustomError(Exception):
pass
class LlmServer:
"""LLm server class"""
def __init__(self) -> None:
self.llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
self.tools = None
self.agent = None
self.chain = None
def initialize_agent(self, tools: List, agent: str) -> str:
"""Initialize the server"""
if self.tools is None:
self.tools = load_tools(tools, llm=self.llm)
self.agent = initialize_agent(self.tools, self.llm, agent, verbose=True)
return "Initialized"
def initialize_llm(self):
template = """You're talking to a friendly agent named Kedar. Context: {output}
He will greet according to your query.
User: hi
Kedar: hello, how may I help you today?
User: how are you?
Kedar: I'm good, thanks for asking. How about you?
"""
prompt = PromptTemplate(input=['output'], template=template)
self.chain = LLMChain(llm=self.llm, prompt=prompt)
# def get_response(self, text: str) -> Dict[str, Any]:
# if self.agent is None:
# raise CustomError('Not Initialized error')
# response = self.agent.run(text)
# return response
def get_response(self, text: str, verbose: bool=True):
response = SimpleSequentialChain(chains=[self.agent, self.chain], verbose=verbose)
return response.run(text)