-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathstandard_workflow_base.py
456 lines (389 loc) · 17.7 KB
/
standard_workflow_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on August 25, 2015
Standard workflow base class definition.
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from collections import namedtuple
import numpy
import re
from veles.compat import from_none
import veles.error as error
from veles.plumbing import FireStarter
# Important: do not remove unused imports! It will prevent MatchingObject
# metaclass from adding the mapping in the corresponding modules
from veles.znicz import activation # pylint: disable=W0611
from veles.znicz.all2all import All2AllSoftmax
from veles.znicz import dropout # pylint: disable=W0611
from veles.znicz.dropout import DropoutForward
from veles.znicz import nn_units
from veles.znicz import normalization # pylint: disable=W0611
from veles.znicz import weights_zerofilling
from veles.loader.base import UserLoaderRegistry, LoaderMSEMixin
BaseWorkflowConfig = namedtuple("BaseWorkflowConfig", ("loader",))
class StandardWorkflowBase(nn_units.NNWorkflow):
"""
A base class for standard workflows with forward and backward propagation.
Is able to automatically create backward units by pre-created forward units
Arguments:
layers: list of dictionary with layers of Model
loader_name: name of the Loader. If loader_name is None, User should \
redefine link_loader() function and link Loader manually.
loader_config: loader configuration parameters
"""
WorkflowConfig = BaseWorkflowConfig
KWATTRS = {"%s_config" % f for f in WorkflowConfig._fields}
mcdnnic_topology_regexp = re.compile(
"(\d+)x(\d+)x(\d+)(-(?:(\d+C\d+)|(MP\d+)|(\d+N)))*")
mcdnnic_layer_patern = re.compile(
"(?P<C>\d+C\d+)|(?P<MP>MP\d+)|(?P<N>\d+N)")
mcdnnic_parse_methods = {}
def __new__(cls, *args, **kwargs):
if not len(cls.mcdnnic_parse_methods):
cls.mcdnnic_parse_methods = {
"C": cls._parse_mcdnnic_c, "N": cls._parse_mcdnnic_n,
"MP": cls._parse_mcdnnic_mp}
return super(StandardWorkflowBase, cls).__new__(cls)
def __init__(self, workflow, **kwargs):
super(StandardWorkflowBase, self).__init__(workflow, **kwargs)
self.layer_map = nn_units.MatchingObject.mapping
self.preprocessing = kwargs.get("preprocessing", False)
self.mcdnnic_topology = kwargs.get("mcdnnic_topology", None)
self.mcdnnic_parameters = kwargs.get("mcdnnic_parameters", None)
self.layers = kwargs.get("layers", [{}])
self._loader_name = None
self._loader = None
self.apply_config(**kwargs)
if "loader_name" in kwargs:
self.loader_name = kwargs["loader_name"]
else:
self.loader_factory = kwargs["loader_factory"]
@property
def loader_name(self):
return self._loader_name
@loader_name.setter
def loader_name(self, value):
if value is None:
self._loader_name = value
return
loader_kwargs = self.dictify(self.config.loader)
if self.mcdnnic_topology is not None:
loader_kwargs = self._update_loader_kwargs_from_mcdnnic(
loader_kwargs, self.mcdnnic_topology)
self.loader_factory = UserLoaderRegistry.get_factory(
value, **loader_kwargs)
self._loader_name = value
@property
def loader_factory(self):
return self._loader_factory
@loader_factory.setter
def loader_factory(self, value):
if not callable(value):
raise TypeError("loader_factory must be callable")
self.loader_name = None
self._loader_factory = value
def reset_unit(fn):
def wrapped(self, *args, **kwargs):
function_name = fn.__name__
instance_name = function_name[5:]
self.unlink_unit(instance_name)
return fn(self, *args, **kwargs)
return wrapped
def check_forward_units(fn):
def wrapped(self, *args, **kwargs):
self._check_forwards()
return fn(self, *args, **kwargs)
return wrapped
def check_backward_units(fn):
def wrapped(self, *args, **kwargs):
self._check_gds()
return fn(self, *args, **kwargs)
return wrapped
def unlink_unit(self, remove_unit_name):
if hasattr(self, remove_unit_name):
self.warning(
"Instance %s exists. It will be removed and unlink"
% remove_unit_name)
remove_unit = getattr(self, remove_unit_name)
remove_unit.unlink_all()
self.del_ref(remove_unit)
def apply_config(self, **kwargs):
old_config = getattr(self, "config", None)
self.config = self.WorkflowConfig(
**{f: self.config2kwargs(kwargs.pop("%s_config" % f,
getattr(old_config, f, {})))
for f in self.WorkflowConfig._fields})
@property
def mcdnnic_topology(self):
return self._mcdnnic_topology
@mcdnnic_topology.setter
def mcdnnic_topology(self, value):
if value is not None:
if not isinstance(value, str):
raise TypeError("mcdnnic_topology must be a string")
if not self.mcdnnic_topology_regexp.match(value):
raise ValueError(
"mcdnnic_topology value must match the following regular"
"expression: %s (got %s)"
% (self.mcdnnic_topology_regexp.pattern, value))
self._mcdnnic_topology = value
@property
def layers(self):
if self.mcdnnic_topology is not None:
return self._get_layers_from_mcdnnic(
self.mcdnnic_topology)
else:
return self._layers
@layers.setter
def layers(self, value):
if self.mcdnnic_topology is not None and value != [{}]:
raise ValueError(
"Please do not set mcdnnic_topology and layers at the same "
"time.")
if not isinstance(value, list):
raise ValueError("layers should be a list of dicts")
if (value == [{}] and self.mcdnnic_topology is None
and not self.preprocessing):
raise error.BadFormatError(
"Looks like layers is empty and mcdnnic_topology is not "
"defined. Please set layers like in VELES samples or"
"mcdnnic_topology like in artical 'Multi-column Deep Neural"
"Networks for Image Classification'"
"(http://papers.nips.cc/paper/4824-imagenet-classification-wi"
"th-deep-convolutional-neural-networks)")
for layer in value:
if not isinstance(layer, dict):
raise ValueError(
"layers should be a list of dicts")
self._layers = value
@property
def preprocessing(self):
return self._preprocessing
@preprocessing.setter
def preprocessing(self, value):
self._preprocessing = value
def _get_mcdnnic_parameters(self, arrow):
if (self.mcdnnic_parameters is not None
and arrow in self.mcdnnic_parameters):
return self.mcdnnic_parameters[arrow]
else:
return {}
@staticmethod
def _parse_mcdnnic_c(index, value):
kernels, kx = value.split("C")
return {
"type": "conv",
"->": {"n_kernels": int(kernels), "kx": int(kx), "ky": int(kx)}}
@staticmethod
def _parse_mcdnnic_mp(index, value):
_, kx = value.split("MP")
return {"type": "max_pooling", "->": {"kx": int(kx), "ky": int(kx)}}
@staticmethod
def _parse_mcdnnic_n(index, value):
neurons, _ = value.split("N")
if index:
return {"type": "softmax",
"->": {"output_sample_shape": int(neurons)}}
else:
return {"type": "all2all",
"->": {"output_sample_shape": int(neurons)}}
def _get_layers_from_mcdnnic(self, description):
layers = []
forward_parameters = self._get_mcdnnic_parameters("->")
backward_parameters = self._get_mcdnnic_parameters("<-")
matches = tuple(re.finditer(self.mcdnnic_layer_patern, description))
for index, match in enumerate(matches):
match_name = next(n for n, v in match.groupdict().items() if v)
layer_config = self.mcdnnic_parse_methods[match_name](
index == len(matches) - 1, match.group(match_name))
layer_config["->"].update(forward_parameters)
layer_config["<-"] = backward_parameters
layers.append(layer_config)
return layers
def _update_loader_kwargs_from_mcdnnic(self, kwargs, description):
inp = description.split("-")[0]
minibatch_size, y_size, x_size = inp.split("x")
kwargs["minibatch_size"] = int(minibatch_size)
kwargs["scale"] = (int(y_size), int(x_size))
return kwargs
def link_forwards(self, init_attrs, *parents):
"""
Creates forward units ( :class:`veles.znicz.nn_units.ForwardBase`
descendant) from "layers" configuration.
Links first forward unit from \*parents argument.
Links init_attrs argument with first forward unit attributes.
For each layer adds a new forward unit to self.forwards, links it with
the previous forward unit by :func:`veles.units.Unit.link_from()` .
Links attributes of that unit with attributes of the previous forward
unit by :func:`veles.units.Unit.link_attrs()` .
Returns the last of :class:`veles.znicz.nn_units.ForwardBase`
descendant units.
Arguments:
init_attrs: attrubutes of parents unit, which will be transfer to\
first forward unit
parents: units, from whom will be link first forward unit
"""
del self.forwards[:]
for _i, layer in enumerate(self.layers):
tpe, kwargs, _ = self._get_layer_type_kwargs(layer)
try:
unit = self.layer_map[tpe].forward(self, **kwargs)
except IndexError:
raise from_none(ValueError("Failed to find a Forward in %s" %
tpe))
self._add_forward_unit(unit, init_attrs, *parents)
# Another loop for ZeroFiller unit. Linking attributes for
# ZeroFiller from attributes of next layer
for prev_forward, forward in zip(self.forwards, self.forwards[1:]):
if isinstance(prev_forward, weights_zerofilling.ZeroFiller):
prev_forward.link_attrs(forward, "weights")
last_fwd = self.forwards[-1]
if not isinstance(last_fwd, All2AllSoftmax) and \
not isinstance(self.real_loader, LoaderMSEMixin):
return last_fwd
def on_initialized():
import veles
if isinstance(self.real_loader, veles.loader.base.LoaderMSEMixin):
if (last_fwd.output_sample_shape != tuple() and
numpy.prod(last_fwd.output_sample_shape) !=
numpy.prod(self.real_loader.targets_shape)):
self.warning("Overriding %s.output_sample_shape with %s",
last_fwd, self.real_loader.targets_shape)
else:
self.info("Setting %s.output_sample_shape to %s",
last_fwd, self.real_loader.targets_shape)
last_fwd.output_sample_shape = self.real_loader.targets_shape
elif isinstance(last_fwd, veles.znicz.all2all.All2AllSoftmax):
ulc = self.real_loader.unique_labels_count
oss = last_fwd.output_sample_shape
if oss != tuple() and numpy.prod(oss) != ulc:
self.warning(
"Overriding %s.output_sample_shape %s with (%s,)",
last_fwd, oss, ulc)
else:
self.info("Setting %s.output_sample_shape to %d",
last_fwd, ulc)
last_fwd.output_sample_shape = ulc
self.real_loader.on_initialized = on_initialized
return last_fwd
def link_repeater(self, *parents):
"""
Links :class:`veles.workflow.Repeater` instance from \*parents.
Returns :class:`veles.workflow.Repeater` instance.
Arguments:
parents: units to link this one from.
"""
self.repeater.link_from(*parents)
return self.repeater
def link_fire_starter(self, *parents):
"""
Links :class:`veles.plumbing.FireStarter` instance from \*parents.
Returns :class:`veles.plumbing.FireStarter` instance.
Arguments:
parents: units to link this one from.
"""
self.fire_starter = FireStarter(self)
self.fire_starter.link_from(*parents)
return self.fire_starter
def dictify(self, obj):
return getattr(obj, "__content__", obj)
def config2kwargs(self, unit_config):
return {} if unit_config is None else self.dictify(unit_config)
def link_loader(self, *parents):
"""
Creates a new :class:`veles.loader.base.Loader` descendant. The actual
class type is taken from the global mapping by "loader_name" key.
Links :class:`veles.loader.base.Loader` descendant from \*parents.
Returns :class:`veles.loader.base.Loader` descendant instance.
Arguments:
parents: units to link this one from.
"""
self.loader = self.loader_factory(self) # pylint: disable=E1102
self.loader.link_from(*parents)
# Save this loader, since it can be later replaced with an Avatar
self.real_loader = self.loader
return self.loader
def link_end_point(self, *parents):
"""
Links the existing :class:`veles.workflow.EndPoint` and
:class:`veles.workflow.Repeater` with \*parents.
Returns :class:`veles.workflow.EndPoint` instance.
Arguments:
parents: units to link this one from.
"""
self.repeater.link_from(*parents)
self.end_point.link_from(*parents)
return self.end_point
def create_workflow(self):
self.link_repeater(self.start_point)
self.link_loader(self.repeater)
# Add forwards units
self.link_forwards(("input", "minibatch_data"), self.loader)
self.end_point.gate_block = ~self.loader.complete
def _get_layer_type_kwargs(self, layer):
tpe = layer.get("type", "").strip()
if not tpe:
raise ValueError("layer type must not be an empty string")
if tpe not in self.layer_map:
raise ValueError("Unknown layer type %s" % tpe)
kwargs_forward = dict(layer.get("->", {}))
kwargs_backward = dict(layer.get("<-", {}))
# Add shared parameters to both dicts
others = {k: v for k, v in layer.items()
if k not in ("type", "->", "<-", "name")}
kwargs_forward.update(others)
kwargs_backward.update(others)
if "name" in layer:
kwargs_forward["name"] = layer["name"] + "_forward"
kwargs_backward["name"] = layer["name"] + "_backward"
return tpe, kwargs_forward, kwargs_backward
def _add_forward_unit(self, new_unit, init_attrs=None, *parents):
"""
Adds a new forward unit to self.forwards, links it with previous fwd
unit by link_from and link_attrs. If self.forwards is empty, links unit
with new_unit
"""
if len(self.forwards) > 0:
prev_forward_unit = self.forwards[-1],
else:
if len(parents) == 0:
raise ValueError(
"No parent units were specified for the first forward!")
prev_forward_unit = parents
new_unit.link_from(*prev_forward_unit)
if isinstance(new_unit, DropoutForward):
new_unit.link_attrs(self.loader, "minibatch_class")
self.forwards.append(new_unit)
if not hasattr(new_unit, "input"):
return
for fwd in reversed(self.forwards[:-1]):
if hasattr(fwd, "output"):
new_unit.link_attrs(fwd, ("input", "output"))
break
else:
new_unit.link_attrs(parents[0], init_attrs)
reset_unit = staticmethod(reset_unit)
check_forward_units = staticmethod(check_forward_units)
check_backward_units = staticmethod(check_backward_units)