-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdecision.py
768 lines (634 loc) · 28.1 KB
/
decision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Aug 15, 2013
Decision unit.
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from __future__ import division
import time
import numpy
import six
from zope.interface import implementer, Interface
from veles.config import root
from veles.distributable import IDistributable
from veles.mutable import Bool
from veles.units import Unit, IUnit
from veles.workflow import NoMoreJobs
from veles.loader import CLASS_NAME, TRAIN, VALID, TEST
from veles.result_provider import IResultProvider
from veles.unit_registry import MappedUnitRegistry
def nvl(x, none_vle):
return none_vle if x is None else x
def nmax(x, y, none_vle=None):
return none_vle if x is None and y is None else max(nvl(x, y), nvl(y, x))
def pt_str(x, percent_sign=True):
return "None" if x is None else ("%.2f%%" if percent_sign else "%.2f") % x
def rpt_str(x):
return "None" if x is None else "%.2f%%" % (100.0 - x)
class DecisionsRegistry(MappedUnitRegistry):
mapping = "decisions"
base = Unit
loss_mapping = {}
def __init__(cls, name, bases, clsdict):
super(DecisionsRegistry, cls).__init__(name, bases, clsdict)
if ("LOSS" in clsdict and "MAPPING" in clsdict):
DecisionsRegistry.loss_mapping[clsdict[
"LOSS"]] = clsdict["MAPPING"]
class IDecision(Interface):
def on_run():
"""This method is supposed to be overriden in inherited classes.
"""
def on_last_minibatch():
"""This method is supposed to be overriden in inherited classes.
"""
def improve_condition():
"""This method is supposed to be overriden in inherited classes.
"""
def on_training_finished():
"""This method is supposed to be overriden in inherited classes.
"""
def on_generate_data_for_slave(data):
"""This method is supposed to be overriden in inherited classes.
"""
def on_generate_data_for_master(data):
"""This method is supposed to be overriden in inherited classes.
"""
def on_apply_data_from_master(data):
"""This method is supposed to be overriden in inherited classes.
"""
def on_apply_data_from_slave(data, slave):
"""This method is supposed to be overriden in inherited classes.
"""
def fill_statistics(stats):
"""This method is supposed to be overriden in inherited classes.
"""
def fill_snapshot_suffixes(suffixes):
"""This method is supposed to be overriden in inherited classes.
"""
def stop_condition():
"""This method is supposed to be overriden in inherited classes.
"""
@six.add_metaclass(DecisionsRegistry)
@implementer(IUnit, IDistributable)
class DecisionBase(Unit):
hide_from_registry = True
"""
Base class for epoch decision units. Keeps track of learning epochs,
that is, dataset passes.
Attributes:
complete (mutable.Bool): everything's over flag
improved (mutable.Bool): indicates whether the previous
epoch's validation results are better than those
of the epoch before it.
train_improved (mutable.Bool): like "improved", but for train.
snapshot_suffix: the suitable suffix for the snapshot file name.
minibatch_class: from loader (must be set before initialize()!)
last_minibatch: from loader (must be set before initialize()!)
class_lengths: from loader (must be set before initialize()!)
epoch_number: from loader (must be set before initialize()!)
epoch_ended: from loader (must be set before initialize()!)
Attributes:
max_epochs - max number of epochs for training (stop if exceeded)
"""
def __init__(self, workflow, **kwargs):
kwargs["view_group"] = kwargs.get("view_group", "TRAINER")
self.complete = Bool(False)
super(DecisionBase, self).__init__(workflow, **kwargs)
self.verify_interface(IDecision)
self.max_epochs = kwargs.get("max_epochs", None)
self.improved = Bool(False)
self.improved_epoch_number = None
self.train_improved = Bool(False)
self.snapshot_suffix = ""
self.epoch_timestamp = False
self.demand("last_minibatch", "minibatch_class",
"class_lengths", "epoch_number", "epoch_ended")
def init_unpickled(self):
super(DecisionBase, self).init_unpickled()
self.epoch_timestamp = False
def on_completed(_):
self.debug("complete becomes True")
self.complete.on_true = on_completed
@property
def max_epochs(self):
return self._max_epochs
@max_epochs.setter
def max_epochs(self, value):
if value is None:
self._max_epochs = None
return
if not isinstance(value, int):
raise TypeError(
"max_epochs must be an integer or None (got %s)" % type(value))
if value < 1:
raise ValueError(
"max_epochs must be greater than 0 (got %d)" % value)
self._max_epochs = value
def initialize(self, **kwargs):
if self.max_epochs is not None:
self.info("Will allow max %d epochs", self.max_epochs)
if self.testing:
self.improved <<= False
self.train_improved <<= False
self.complete <<= False
def run(self):
if self.epoch_timestamp is False:
self.epoch_timestamp = time.time()
self.on_run()
if self.is_slave:
self.complete <<= True
self.on_last_minibatch()
self._print_statistics()
elif self.last_minibatch:
self._on_last_minibatch()
def generate_data_for_master(self):
data = {}
self.on_generate_data_for_master(data)
return data
def generate_data_for_slave(self, slave):
if self.complete:
raise NoMoreJobs()
if self.epoch_timestamp is False:
self.epoch_timestamp = time.time()
data = {}
self.on_generate_data_for_slave(data)
return data
def apply_data_from_master(self, data):
self.complete <<= False
self.on_apply_data_from_master(data)
def apply_data_from_slave(self, data, slave):
if slave is None:
# Partial update
return
self.on_apply_data_from_slave(data, slave)
if self.last_minibatch:
self._on_last_minibatch()
self.has_data_for_slave = not self.complete
def drop_slave(self, slave):
pass
def initialize_arrays(self, minibatch_array, arrays):
if minibatch_array:
for index, item in enumerate(arrays):
if item is None or item.size != len(minibatch_array):
arrays[index] = numpy.zeros_like(minibatch_array.mem)
else:
arrays[index][:] = 0
else:
import traceback
stack = traceback.format_stack(limit=2)[:-1]
self.debug("Did not initialize arrays:\n%s", "\n".join(stack))
def _on_last_minibatch(self):
self.on_last_minibatch()
# Test and Validation sets processed
if self.epoch_ended:
self.train_improved <<= self.train_improve_condition()
improved = self.improve_condition()
if improved:
self.improved_epoch_number = self.epoch_number
self.improved <<= improved
suffixes = []
self.fill_snapshot_suffixes(suffixes)
self.snapshot_suffix = '_'.join(suffixes)
self.complete <<= self._stop_condition()
# Training set processed
if self.minibatch_class == TRAIN:
self.on_training_finished()
self._print_statistics()
def _stop_condition(self):
if self.testing:
return True
# stop if max epoch number was reached or earlier
return self.stop_condition() or (self.max_epochs is not None and
self.epoch_number >= self.max_epochs)
def _print_statistics(self):
stats = []
self.fill_statistics(stats)
timestamp = time.time()
self.info("Epoch %d class %s %s in %.2f sec" %
(self.epoch_number, CLASS_NAME[self.minibatch_class],
" ".join(stats),
timestamp - self.epoch_timestamp))
self.epoch_timestamp = timestamp
@implementer(IDecision)
class TrivialDecision(DecisionBase):
def on_run(self):
pass
def on_last_minibatch(self):
pass
def improve_condition(self):
return False
def train_improve_condition(self):
return False
def on_training_finished(self):
pass
def on_generate_data_for_slave(self, data):
return None
def on_generate_data_for_master(self, data):
return None
def on_apply_data_from_master(self, data):
pass
def on_apply_data_from_slave(self, data, slave):
pass
def fill_statistics(self, stats):
pass
def fill_snapshot_suffixes(self, suffixes):
pass
def stop_condition(self):
return False
@implementer(IDecision, IResultProvider)
class DecisionGD(DecisionBase):
MAPPING = "decision_gd"
LOSS = "softmax"
"""Rules the gradient descent learning process.
Attributes:
gd_skip: skip gradient descent or not.
minibatch_n_err: number of errors for a minibatch.
epoch_n_err: number of errors for an epoch.
epoch_n_err_pt: number of errors for an epoch in percents.
fail_iterations: number of consequent iterations with non-decreased
validation error.
confusion_matrixes: confusion matrixes.
minibatch_confusion_matrix: confusion matrix for a minibatch.
minibatch_max_err_y_sum: maximum of backpropagated gradient
for a minibatch.
max_err_y_sums: maximums of backpropagated gradient.
"""
BIGNUM = 1.0e30
def __init__(self, workflow, **kwargs):
super(DecisionGD, self).__init__(workflow, **kwargs)
self.fail_iterations = kwargs.get("fail_iterations", 100)
self.gd_skip = Bool()
# Values for the current epoch
self.epoch_n_err = [None] * 3
self.epoch_n_evaluated_samples = [0] * 3
self.epoch_n_err_pt = [None] * 3
# Best achieved errors, independently for each class
self.best_n_err_pt = [None] * 3
# and its epoch numbers
self.best_n_err_pt_epoch_number = [None] * 3
# errors for other classes when the given class was the best
self.best_n_err_pt_others = [[None] * 3] * 3
self._store_best_n_err_pt_others = [False] * 3
# Errors at the epoch where
# max of train and validation errors was the best
self.best_minimax_n_err_pt = [None] * 3
# and it's epoch number
self.best_minimax_n_err_pt_epoch_number = -1
self.minibatch_n_err = None # memory.Array()
self.minibatch_confusion_matrix = None # memory.Array()
self.minibatch_max_err_y_sum = None # memory.Array()
self.confusion_matrixes = [None] * 3
self.max_err_y_sums = [0] * 3
self.autoencoder = False
self.demand("minibatch_size")
def initialize(self, **kwargs):
super(DecisionGD, self).initialize(**kwargs)
# Reset errors
self.epoch_n_err[:] = [None] * 3
self.epoch_n_evaluated_samples[:] = [0] * 3
self.epoch_n_err_pt[:] = [None] * 3
map(self.reset_statistics, range(3))
self.initialize_arrays(self.minibatch_confusion_matrix,
self.confusion_matrixes)
def get_metric_names(self):
if not self.testing:
return {"Min errors", "Accuracy", "EvaluationFitness",
"Best epoch"}
return set()
def get_metric_values(self):
if self.testing:
return {}
tstr = CLASS_NAME[TRAIN]
vstr = CLASS_NAME[VALID]
cstr = "minimax(%s, %s)" % (tstr, vstr)
evalfun = root.common.evaluation_transform
return {
"Min errors": {
tstr: pt_str(self.best_n_err_pt[TRAIN]),
vstr: pt_str(self.best_n_err_pt[VALID]),
cstr: pt_str(
nmax(self.best_minimax_n_err_pt[VALID],
self.best_minimax_n_err_pt[TRAIN]))
},
"Accuracy": {
tstr: rpt_str(self.best_n_err_pt[TRAIN]),
vstr: rpt_str(self.best_n_err_pt[VALID]),
cstr: rpt_str(
nmax(self.best_minimax_n_err_pt[VALID],
self.best_minimax_n_err_pt[TRAIN]))
},
"EvaluationFitness": evalfun(
1 - nvl(self.best_n_err_pt[VALID], 100) / 100,
1 - nvl(self.best_n_err_pt[TRAIN], 100) / 100),
"Best epoch": {
tstr: nvl(self.best_n_err_pt_epoch_number[TRAIN], "None"),
vstr: nvl(self.best_n_err_pt_epoch_number[VALID], "None"),
cstr: nvl(self.best_minimax_n_err_pt_epoch_number,
"None")
}}
def on_run(self):
# Check skip gradient descent or not
self.gd_skip <<= (self.minibatch_class != TRAIN)
def on_last_minibatch(self):
minibatch_class = self.minibatch_class
# Copy confusion matrix
if (self.minibatch_confusion_matrix is not None and
self.minibatch_confusion_matrix.mem is not None):
self.minibatch_confusion_matrix.map_read()
self.confusion_matrixes[minibatch_class][:] = (
self.minibatch_confusion_matrix.mem[:])
if self.minibatch_n_err:
self.minibatch_n_err.map_read()
self.epoch_n_err[minibatch_class] = self.minibatch_n_err[0]
self.epoch_n_evaluated_samples[minibatch_class] = (
self.minibatch_n_err[1])
# Calculate error in percent
if self.class_lengths[minibatch_class]:
self.epoch_n_err_pt[minibatch_class] = (
100.0 * self.epoch_n_err[minibatch_class] /
self.epoch_n_evaluated_samples[minibatch_class])
# Update best error
if (self.epoch_n_err_pt[minibatch_class] <
nvl(self.best_n_err_pt[minibatch_class], self.BIGNUM)):
self.best_n_err_pt[minibatch_class] = (
self.epoch_n_err_pt[minibatch_class])
self.best_n_err_pt_epoch_number[minibatch_class] = (
self.epoch_number)
self._store_best_n_err_pt_others[minibatch_class] = True
# Store maximum of backpropagated gradient
if (self.minibatch_max_err_y_sum is not None and
self.minibatch_max_err_y_sum.mem is not None):
self.minibatch_max_err_y_sum.map_read()
self.max_err_y_sums[minibatch_class] = (
self.minibatch_max_err_y_sum[0])
def improve_condition(self):
"""Called at the end of an epoch.
minibatch_class will be VALID if validation exists, else TRAIN.
"""
for i, store in enumerate(self._store_best_n_err_pt_others):
if store:
self.best_n_err_pt_others[i][:] = self.epoch_n_err_pt
self._store_best_n_err_pt_others[i] = False
minibatch_class = self.minibatch_class
if (nmax(self.epoch_n_err_pt[minibatch_class],
self.epoch_n_err_pt[TRAIN], self.BIGNUM) <
nmax(self.best_minimax_n_err_pt[minibatch_class],
self.best_minimax_n_err_pt[TRAIN], self.BIGNUM)):
for i in (minibatch_class, TRAIN, TEST):
self.best_minimax_n_err_pt[i] = self.epoch_n_err_pt[i]
self.best_minimax_n_err_pt_epoch_number = self.epoch_number
return True
return False
def train_improve_condition(self):
if (nvl(self.epoch_n_err_pt[TRAIN], self.BIGNUM) <
nvl(self.best_n_err_pt[TRAIN], self.BIGNUM)):
self.best_n_err_pt[TRAIN] = self.epoch_n_err_pt[TRAIN]
self.best_n_err_pt_epoch_number[TRAIN] = self.epoch_number
self._store_best_n_err_pt_others[TRAIN] = True
return True
return False
def on_training_finished(self):
pass
def on_generate_data_for_master(self, data):
for attr in ["minibatch_n_err", "minibatch_max_err_y_sum",
"minibatch_confusion_matrix"]:
attrval = getattr(self, attr)
if attrval is not None:
attrval.map_read()
data[attr] = attrval.mem
def on_generate_data_for_slave(self, data):
data["improved"] = bool(self.improved)
def on_apply_data_from_master(self, data):
self.improved <<= data["improved"]
self.reset_statistics(self.minibatch_class)
# To stop just after the first minibatch
self.best_minimax_n_err_pt[VALID] = 0
self.best_minimax_n_err_pt[TRAIN] = 0
def on_apply_data_from_slave(self, data, slave):
if self.minibatch_n_err:
self.minibatch_n_err.map_write()
self.minibatch_n_err.mem += data["minibatch_n_err"]
if self.minibatch_max_err_y_sum is not None:
self.minibatch_max_err_y_sum.map_write()
numpy.maximum(self.minibatch_max_err_y_sum.mem,
data["minibatch_max_err_y_sum"],
self.minibatch_max_err_y_sum.mem)
if self.minibatch_confusion_matrix is not None:
self.minibatch_confusion_matrix.map_write()
self.minibatch_confusion_matrix.mem += data[
"minibatch_confusion_matrix"]
def stop_condition(self):
if all(nvl(self.best_minimax_n_err_pt[i], 0) <= 0
for i in (VALID, TRAIN)):
return True
if (self.epoch_number - self.improved_epoch_number >
self.fail_iterations):
return True
return False
def fill_statistics(self, ss):
minibatch_class = self.minibatch_class
if self.minibatch_n_err is not None and not self.autoencoder:
if (self.epoch_n_err[minibatch_class] == 0 and
self.epoch_number == 0):
self.warning("Number of errors equals to 0 before the training"
" has actually started => dropping into pdb...")
import pdb
pdb.set_trace()
ss.append("n_err %d of %d (%.2f%%)" %
(self.epoch_n_err[minibatch_class],
self.epoch_n_evaluated_samples[minibatch_class],
self.epoch_n_err_pt[minibatch_class]))
if not self.is_slave: # we will need them in generate_data_for_master
self.reset_statistics(self.minibatch_class)
def fill_snapshot_suffixes(self, ss):
if self.minibatch_n_err is not None:
for set_samples in(TEST, VALID, TRAIN):
if self.epoch_n_err_pt[set_samples] is not None:
ss.append(
"%s_%s" % (
CLASS_NAME[set_samples],
pt_str(self.epoch_n_err_pt[set_samples], False)))
def reset_statistics(self, minibatch_class):
# Reset statistics per class
for vec in (self.minibatch_n_err, self.minibatch_max_err_y_sum,
self.minibatch_confusion_matrix):
if not vec:
continue
vec.map_invalidate()
vec.mem[:] = 0
class DecisionMSE(DecisionGD):
MAPPING = "decision_mse"
LOSS = "mse"
"""Rules the gradient descent mean square error (MSE) learning process.
Attributes:
epoch_metrics: metrics for an epoch (same as minibatch_metrics).
"""
def __init__(self, workflow, **kwargs):
super(DecisionMSE, self).__init__(workflow, **kwargs)
# Values for the current epoch
self.epoch_mse = [None] * 3
# Best achieved MSE, independently for each class
self.best_mse = [None] * 3
# and its epoch numbers
self.best_mse_epoch_number = [None] * 3
# MSE for other classes when the given class was the best
self.best_mse_others = [[None] * 3] * 3
self._store_best_mse_others = [False] * 3
# MSE at the epoch where
# max of train and validation MSE was the best
self.best_minimax_mse = [None] * 3
# and it's epoch number
self.best_minimax_mse_epoch_number = -1
self.epoch_metrics = [None] * 3
self.root = kwargs.get("root", True)
self.demand("minibatch_metrics", "minibatch_class", "class_lengths")
def initialize(self, **kwargs):
super(DecisionMSE, self).initialize(**kwargs)
self.initialize_arrays(self.minibatch_metrics, self.epoch_metrics)
def get_metric_names(self):
if self.testing:
return set()
names = super(DecisionMSE, self).get_metric_names()
mstr = "RMSE" if self.root else "MSE"
tstr = CLASS_NAME[TRAIN]
vstr = CLASS_NAME[VALID]
names.update({mstr, "Min %s epochs number" % mstr,
"%s %s on min %s %s" % (tstr, mstr, vstr, mstr),
"EvaluationFitness"})
return names
def get_metric_values(self):
if self.testing:
return {}
values = super(DecisionMSE, self).get_metric_values()
mstr = "RMSE" if self.root else "MSE"
tstr = CLASS_NAME[TRAIN]
vstr = CLASS_NAME[VALID]
cstr = "minimax(%s, %s)" % (tstr, vstr)
evalfun = root.common.evaluation_transform
values.update({
mstr: {tstr: "%.12f" % self.best_mse[TRAIN],
vstr: "%.12f" % self.best_mse[VALID],
cstr: "%.12f" %
nmax(self.best_minimax_mse[VALID],
self.best_minimax_mse[TRAIN])},
"EvaluationFitness":
evalfun(-self.best_minimax_mse[VALID], -self.best_minimax_mse[
TRAIN]),
"Min %s epochs number" % mstr:
{tstr: self.best_mse_epoch_number[TRAIN],
vstr: self.best_mse_epoch_number[VALID],
cstr: self.best_minimax_mse_epoch_number},
"%s %s on min %s %s" % (tstr, mstr, vstr, mstr):
self.best_mse_others[VALID][TRAIN]})
return values
def on_last_minibatch(self):
super(DecisionMSE, self).on_last_minibatch()
# minibatch_metrics: [SUM((R)MSE), min((R)MSE), max((R)MSE)]
minibatch_class = self.minibatch_class
self.minibatch_metrics.map_read()
# Copy metrics
self.epoch_metrics[minibatch_class][:] = (
self.minibatch_metrics.mem[:])
# Compute average mse
self.epoch_metrics[minibatch_class][0] = (
self.epoch_metrics[minibatch_class][0] /
self.class_lengths[minibatch_class])
if self.epoch_number == 0:
self.epoch_metrics[TRAIN][:] = self.epoch_metrics[VALID][:]
def improve_condition(self):
if (nvl(self.epoch_metrics[VALID][0], self.BIGNUM) <
nvl(self.best_mse[VALID], self.BIGNUM)):
self.best_mse[VALID] = self.epoch_metrics[VALID][0]
self.best_mse_epoch_number[VALID] = self.epoch_number
self._store_best_mse_others[VALID] = True
for i, store in enumerate(self._store_best_mse_others):
if store:
self.best_mse_others[i][:] = (x[0] for x in self.epoch_metrics)
self._store_best_mse_others[i] = False
minibatch_class = self.minibatch_class
if (nmax(self.epoch_metrics[minibatch_class][0],
self.epoch_metrics[TRAIN][0], self.BIGNUM) <
nmax(self.best_minimax_mse[minibatch_class],
self.best_minimax_mse[TRAIN], self.BIGNUM)):
for i in (minibatch_class, TRAIN, TEST):
self.best_minimax_mse[i] = self.epoch_metrics[i][0]
self.best_minimax_mse_epoch_number = self.epoch_number
return True
return super(DecisionMSE, self).improve_condition()
def train_improve_condition(self):
if (nvl(self.epoch_metrics[TRAIN][0], self.BIGNUM) <
nvl(self.best_mse[TRAIN], self.BIGNUM)):
self.best_mse[TRAIN] = self.epoch_metrics[TRAIN][0]
self.best_mse_epoch_number[TRAIN] = self.epoch_number
self._store_best_mse_others[TRAIN] = True
return True
return super(DecisionMSE, self).train_improve_condition()
def on_generate_data_for_master(self, data):
super(DecisionMSE, self).on_generate_data_for_master(data)
for attr in ("minibatch_metrics",):
attrval = getattr(self, attr)
if attrval is not None:
attrval.map_read()
data[attr] = attrval.mem
def on_apply_data_from_master(self, data):
super(DecisionMSE, self).on_apply_data_from_master(data)
# To stop just after the first minibatch
self.best_minimax_mse[TRAIN] = 0
self.best_minimax_mse[VALID] = 0
def on_apply_data_from_slave(self, data, slave):
super(DecisionMSE, self).on_apply_data_from_slave(data, slave)
if self.minibatch_metrics is not None:
self.minibatch_metrics.map_write()
self.minibatch_metrics[0] += data["minibatch_metrics"][0]
self.minibatch_metrics[1] = numpy.maximum(
self.minibatch_metrics[1], data["minibatch_metrics"][1])
self.minibatch_metrics[2] = numpy.minimum(
self.minibatch_metrics[2], data["minibatch_metrics"][2])
def fill_snapshot_suffixes(self, ss):
if self.minibatch_metrics is not None:
for mc in VALID, TRAIN:
ss.append("%.4f" % self.epoch_metrics[mc][0])
super(DecisionMSE, self).fill_snapshot_suffixes(ss)
def fill_statistics(self, ss):
minibatch_class = self.minibatch_class
if self.epoch_metrics[minibatch_class] is not None:
ss.append("%s %.6f (max %.6f; min %.3e)" %
(("RMSE" if self.root else "MSE",) +
tuple(self.epoch_metrics[minibatch_class])))
super(DecisionMSE, self).fill_statistics(ss)
def reset_statistics(self, minibatch_class):
super(DecisionMSE, self).reset_statistics(minibatch_class)
# Reset statistics per class
if (self.minibatch_metrics is not None and
self.minibatch_metrics.mem is not None):
self.minibatch_metrics.map_invalidate()
self.minibatch_metrics.mem[:] = 0
def stop_condition(self):
if all(nvl(self.best_minimax_mse[i], 0) <= 0 for i in (VALID, TRAIN)):
return True
if (self.epoch_number - self.improved_epoch_number >
self.fail_iterations):
return True
return False