|
| 1 | +import argparse |
| 2 | +import os |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from chronos import ChronosPipeline |
| 7 | +from gluonts.dataset.repository import get_dataset |
| 8 | +from gluonts.dataset.split import split |
| 9 | +from gluonts.ev.metrics import ( |
| 10 | + MAE, |
| 11 | + MAPE, |
| 12 | + MASE, |
| 13 | + MSE, |
| 14 | + MSIS, |
| 15 | + ND, |
| 16 | + NRMSE, |
| 17 | + RMSE, |
| 18 | + SMAPE, |
| 19 | + MeanWeightedSumQuantileLoss, |
| 20 | +) |
| 21 | +from gluonts.itertools import batcher |
| 22 | + |
| 23 | +# from gluonts.model.evaluation import evaluate_forecasts |
| 24 | +from gluonts.model.forecast import SampleForecast |
| 25 | +from tqdm.auto import tqdm |
| 26 | + |
| 27 | +from uni2ts.eval_util.data import get_gluonts_test_dataset |
| 28 | +from uni2ts.eval_util.evaluation import evaluate_forecasts |
| 29 | +from uni2ts.eval_util.metrics import MedianMSE |
| 30 | + |
| 31 | + |
| 32 | +def evaluate(pipeline, dataset, save_path, num_samples=20, batch_size=512): |
| 33 | + print("-" * 5, f"Evaluating {dataset}", "-" * 5) |
| 34 | + test_data, metadata = get_gluonts_test_dataset(dataset) |
| 35 | + prediction_length = metadata.prediction_length |
| 36 | + |
| 37 | + while True: |
| 38 | + try: |
| 39 | + # Generate forecast samples |
| 40 | + forecast_samples = [] |
| 41 | + for batch in tqdm(batcher(test_data.input, batch_size=batch_size)): |
| 42 | + context = [torch.tensor(entry["target"]) for entry in batch] |
| 43 | + forecast_samples.append( |
| 44 | + pipeline.predict( |
| 45 | + context, |
| 46 | + prediction_length=prediction_length, |
| 47 | + num_samples=num_samples, |
| 48 | + limit_prediction_length=False, # We disable the limit on prediction length. |
| 49 | + ).numpy() |
| 50 | + ) |
| 51 | + forecast_samples = np.concatenate(forecast_samples) |
| 52 | + break |
| 53 | + except torch.cuda.OutOfMemoryError: |
| 54 | + print( |
| 55 | + f"OutOfMemoryError at batch_size {batch_size}, reducing to {batch_size//2}" |
| 56 | + ) |
| 57 | + batch_size //= 2 |
| 58 | + |
| 59 | + # Convert forecast samples into gluonts SampleForecast objects |
| 60 | + sample_forecasts = [] |
| 61 | + for item, ts in zip(forecast_samples, test_data.input): |
| 62 | + forecast_start_date = ts["start"] + len(ts["target"]) |
| 63 | + sample_forecasts.append( |
| 64 | + SampleForecast(samples=item, start_date=forecast_start_date) |
| 65 | + ) |
| 66 | + |
| 67 | + # Evaluate |
| 68 | + metrics_df = evaluate_forecasts( |
| 69 | + sample_forecasts, |
| 70 | + test_data=test_data, |
| 71 | + metrics=[ |
| 72 | + MSE(), |
| 73 | + MAE(), |
| 74 | + MAPE(), |
| 75 | + SMAPE(), |
| 76 | + MSIS(), |
| 77 | + RMSE(), |
| 78 | + NRMSE(), |
| 79 | + ND(), |
| 80 | + MASE(), |
| 81 | + MedianMSE(), |
| 82 | + MeanWeightedSumQuantileLoss(np.arange(0.1, 1.0, 0.1)), |
| 83 | + ], |
| 84 | + ) |
| 85 | + metrics_df.index = [dataset] |
| 86 | + print(metrics_df) |
| 87 | + metrics_df.to_csv(save_path) |
| 88 | + print(f"Results saved to {save_path}") |
| 89 | + print("-" * 5, f"Evaluation of {dataset} complete", "-" * 5) |
| 90 | + return metrics_df |
| 91 | + |
| 92 | + |
| 93 | +if __name__ == "__main__": |
| 94 | + parser = argparse.ArgumentParser( |
| 95 | + description="Load a model and dataset, then make predictions." |
| 96 | + ) |
| 97 | + parser.add_argument( |
| 98 | + "--model_path", type=str, required=True, help="Path to load the model" |
| 99 | + ) |
| 100 | + parser.add_argument( |
| 101 | + "--dataset", type=str, required=True, help="Name of the dataset to use" |
| 102 | + ) |
| 103 | + parser.add_argument( |
| 104 | + "--save_dir", type=str, default="results", help="Directory to save the results" |
| 105 | + ) |
| 106 | + parser.add_argument( |
| 107 | + "--num_samples", type=int, default=20, help="Number of samples to generate" |
| 108 | + ) |
| 109 | + parser.add_argument( |
| 110 | + "--batch_size", type=int, default=512, help="Batch size for generating samples" |
| 111 | + ) |
| 112 | + parser.add_argument("--run_name", type=str, default="test", help="Name of the run") |
| 113 | + |
| 114 | + args = parser.parse_args() |
| 115 | + # Load Chronos |
| 116 | + pipeline = ChronosPipeline.from_pretrained( |
| 117 | + # "amazon/chronos-t5-small", |
| 118 | + args.model_path, |
| 119 | + device_map="cuda:0", |
| 120 | + torch_dtype=torch.bfloat16, |
| 121 | + ) |
| 122 | + output_dir = os.path.join(args.save_dir, args.run_name) |
| 123 | + if not os.path.exists(output_dir): |
| 124 | + os.makedirs(output_dir) |
| 125 | + evaluate(pipeline, args.dataset, os.path.join(output_dir, f"{args.dataset}.csv")) |
0 commit comments