-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
297 lines (268 loc) · 10.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Sequence, Union
import os
import json
import time
import copy
import logging
import numpy as np
import torch
from torch_geometric.data import Data
from data import DataloaderBase, Dataset
from factory import SingleStageFrameworkFactory
from models import count_parameters
from utils import get_device, get_pbar, mkdir, seed_torch
@dataclass(frozen=True)
class TrainerParams:
output_directory: str
model_name: str
model_params: Dict[str, Any]
optim_params: Dict[str, Any]
hyperparameters: Dict[str, Any]
dataset: Dataset
seed: int
fold: int
ssl: bool
harmonize: bool
validation: bool
labeled_sites: Optional[Union[str, Sequence[str]]] = field(default=None)
unlabeled_sites: Optional[Union[str, Sequence[str]]] = field(default=None)
num_unlabeled: Optional[int] = field(default=None)
device: int = field(default=-1)
verbose: bool = field(default=False)
patience: int = field(default=np.inf)
max_epoch: int = field(default=1000)
save_model: bool = field(default=False)
dataloader_num_process: int = 1
time_id: bool = field(init=False, default_factory=lambda: int(time.strftime('%Y%m%d%H%M%S',time.localtime(time.time())) + str(time.time()).split('.')[-1][:3])) # int(time.time()))
def to_dict(self) -> Dict[str, Any]:
return {
"model_name": self.model_name,
"model_params": str(self.model_params),
"optim_params": str(self.optim_params),
"hyperparameters": str(self.hyperparameters),
"dataset": self.dataset.value,
"seed": self.seed,
"fold": self.fold,
"ssl": self.ssl,
"harmonize": self.harmonize,
"validation": self.validation,
"labeled_sites": self.labeled_sites,
"unlabeled_sites": self.unlabeled_sites,
"device": self.device,
"epochs_log_path": self.epochs_log_path,
}
@property
def model_path(self):
return os.path.join(
os.path.abspath(self.output_directory),
"models",
"{}_{}_{}_{}_{}.pt".format(
self.dataset.value,
self.model_name,
self.seed,
self.fold,
self.time_id,
),
)
@property
def epochs_log_path(self):
return os.path.join(
os.path.abspath(self.output_directory),
"epochs_log",
"{}_{}_{}_{}_{}.log".format(
self.dataset.value,
self.model_name,
self.seed,
self.fold,
self.time_id,
),
)
@dataclass(frozen=True)
class TrainerResults:
trainer_params: TrainerParams
num_labeled_train: int
num_unlabeled_train: int
num_valid: int
baseline_accuracy: float
best_metrics: Dict[str, float]
best_epoch: int
time_taken: int
model_size: int
model_path: Optional[str]
def to_dict(self) -> Dict[str, Any]:
return {
**self.trainer_params.to_dict(),
"num_labeled_train": self.num_labeled_train,
"num_unlabeled_train": self.num_unlabeled_train,
"num_valid": self.num_valid,
"baseline_accuracy": self.baseline_accuracy,
**self.best_metrics,
"best_epoch": self.best_epoch,
"time_taken": self.time_taken,
"model_size": self.model_size,
"model_path": self.model_path,
}
class Trainer(ABC):
def __init__(
self, dataloader: DataloaderBase, trainer_params: TrainerParams,
):
super().__init__()
if dataloader.dataset != trainer_params.dataset:
raise Exception(
"dataloader.dataset != trainer_params.dataset, {} != {}".format(
dataloader.dataset.value, trainer_params.dataset.value
)
)
if dataloader.harmonize != trainer_params.harmonize:
raise Exception(
"dataloader.harmonize != trainer_params.harmonize, {} != {}".format(
dataloader.harmonize, trainer_params.harmonize
)
)
self.dataloader = dataloader
self.trainer_params = trainer_params
self.__called = False
def _set_called(self):
if self.__called:
raise Exception("Trainer.run() can only be called once")
self.__called = True
@staticmethod
def verbose_info(train_metrics: dict, valid_metrics: dict) -> str:
all_metrics = []
for k, v in train_metrics.items():
all_metrics.append("train_{}: {:.4f}".format(k, v))
for k, v in valid_metrics.items():
all_metrics.append("valid_{}: {:.4f}".format(k, v))
return " ".join(all_metrics)
@staticmethod
def _get_baseline_accuracy(data: Union[Data, Sequence[Data]]) -> float:
if not isinstance(data, Data):
y = torch.cat([d.y for d in data], dim=0)
else:
y = data.y
_, counts = y.unique(return_counts=True)
return (counts.max() / y.size(0)).item()
@abstractmethod
def run(self):
raise NotImplementedError
class SingleStageFrameworkTrainer(Trainer):
def run(self) -> TrainerResults:
self._set_called()
seed_torch()
device = get_device(self.trainer_params.device)
verbose = self.trainer_params.verbose
start = time.time()
data_dict = self.dataloader.load_split_data(
seed=self.trainer_params.seed,
fold=self.trainer_params.fold,
ssl=self.trainer_params.ssl,
validation=self.trainer_params.validation,
labeled_sites=self.trainer_params.labeled_sites,
unlabeled_sites=self.trainer_params.unlabeled_sites,
num_unlabeled=self.trainer_params.num_unlabeled,
num_process=self.trainer_params.dataloader_num_process,
)
num_labeled_train = data_dict.get("num_labeled_train", 0)
num_unlabeled_train = data_dict.get("num_unlabeled_train", 0)
if self.trainer_params.validation:
num_valid = data_dict.get("num_valid", 0)
baseline_accuracy = self._get_baseline_accuracy(
data_dict.get("valid")
)
else:
num_valid = data_dict.get("num_test", 0)
baseline_accuracy = self._get_baseline_accuracy(
data_dict.get("test")
)
self.trainer_params.model_params["input_size"] = data_dict["input_size"]
self.trainer_params.model_params["num_sites"] = data_dict["num_sites"]
model = SingleStageFrameworkFactory.load_model(
self.trainer_params.model_name, self.trainer_params.model_params
)
model_size = count_parameters(model)
optimizer = model.get_optimizer(self.trainer_params.optim_params)
patience = self.trainer_params.patience
cur_patience = 0
max_epoch = self.trainer_params.max_epoch
best_epoch = 0
best_metrics = {
"ce_loss": np.inf,
"accuracy": 0,
}
save_model = self.trainer_params.save_model
best_model_state_dict = None
epochs_log_path = self.trainer_params.epochs_log_path
mkdir(os.path.dirname(epochs_log_path))
with open(epochs_log_path, "w") as f:
f.write("")
pbar = get_pbar(max_epoch, verbose)
for epoch in pbar:
try:
train_metrics = model.train_step(
device,
data_dict.get("labeled_train", None),
data_dict.get("unlabeled_train", None),
optimizer,
self.trainer_params.hyperparameters,
)
if self.trainer_params.validation:
valid_metrics = model.test_step(
device, data_dict.get("valid", None)
)
else:
valid_metrics = model.test_step(
device, data_dict.get("test", None)
)
except Exception as e:
logging.error(e, exc_info=True)
with open(epochs_log_path, "a") as f:
f.write(
json.dumps(
{"train": train_metrics, "valid": valid_metrics},
sort_keys=True,
)
+ "\n"
)
save = valid_metrics["accuracy"] > best_metrics["accuracy"] or (
valid_metrics["accuracy"] == best_metrics["accuracy"]
and valid_metrics["ce_loss"] < best_metrics["ce_loss"]
)
if save:
best_epoch = epoch
best_metrics = valid_metrics.copy()
if save_model:
best_model_state_dict = copy.deepcopy(model.state_dict())
cur_patience = 0
else:
cur_patience += 1
if verbose:
pbar.set_postfix_str(
self.verbose_info(train_metrics, valid_metrics)
)
if cur_patience == patience:
break
if save_model and best_model_state_dict is not None:
try:
model_path = self.trainer_params.model_path
mkdir(os.path.dirname(model_path))
torch.save(best_model_state_dict, model_path)
except Exception as e:
logging.error(str(e))
model_path = None
else:
model_path = None
end = time.time()
return TrainerResults(
trainer_params=self.trainer_params,
num_labeled_train=num_labeled_train,
num_unlabeled_train=num_unlabeled_train,
num_valid=num_valid,
baseline_accuracy=baseline_accuracy,
best_metrics=best_metrics,
best_epoch=best_epoch,
time_taken=end - start,
model_size=model_size,
model_path=model_path,
)