-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
196 lines (165 loc) · 6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from __future__ import annotations
from collections import defaultdict
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, Optional, Sequence, Union
import os.path as osp
from itertools import product
__dir__ = osp.dirname(osp.dirname(osp.abspath(__file__)))
EXPERIMENT_DIR = osp.join(__dir__, "experiments")
@dataclass(frozen=True)
class RangeGenerator:
min: int
max: int
def generate(self):
return list(range(self.min, self.max))
@staticmethod
def parse(range_cfg: Dict[str, Any]) -> RangeGenerator:
return RangeGenerator(**range_cfg)
@dataclass(frozen=True)
class ModelConfig:
all_models: Sequence[single_model]
@dataclass(frozen=True)
class single_model:
model_name: str
model_params: Dict[str, Any]
optim_params: Dict[str, Any] = field(default_factory=dict)
hyperparameters: Dict[str, Any] = field(default_factory=dict)
def to_dict(self) -> Dict[str, Any]:
return dict(
model_name=self.model_name,
model_params=self.model_params,
optim_params=self.optim_params,
hyperparameters=self.hyperparameters,
)
def generate(self):
return [cfg.to_dict() for cfg in self.all_models]
@staticmethod
def parse(model_configs: Sequence[Dict[str, Any]]) -> ModelConfig:
all_models = [ModelConfig.single_model(**cfg) for cfg in model_configs]
return ModelConfig(all_models)
@dataclass(frozen=True)
class DataConfig:
all_data: Sequence[single_data]
@dataclass(frozen=True)
class single_data:
dataset: str
labeled_sites: Sequence[Optional[Union[str, Sequence[str]]]]
unlabeled_sites: Sequence[Optional[Union[str, Sequence[str]]]] = field(
default=(None,)
)
num_unlabeled: Sequence[Optional[Union[str, Sequence[str]]]] = field(
default=(None,)
)
output_directory: Optional[str] = field(default=None)
def generate(self):
return [
dict(
dataset=cfg.dataset,
labeled_sites=labeled_sites,
unlabeled_sites=unlabeled_sites,
num_unlabeled=num_unlabeled,
output_directory=cfg.output_directory,
)
for cfg in self.all_data
for labeled_sites in cfg.labeled_sites
for unlabeled_sites in cfg.unlabeled_sites
for num_unlabeled in cfg.num_unlabeled
]
@staticmethod
def parse(data_configs: Sequence[Dict[str, Any]]) -> DataConfig:
return DataConfig(
[DataConfig.single_data(**cfg) for cfg in data_configs]
)
@dataclass(frozen=True)
class ExperimentSettings:
all_settings: Sequence[single_setting]
@dataclass(frozen=True)
class single_setting:
ssl: bool = field(default=False)
harmonize: bool = field(default=False)
validation: bool = field(default=False)
def to_dict(self) -> Dict[str, bool]:
return dict(
ssl=self.ssl,
harmonize=self.harmonize,
validation=self.validation,
)
def generate(self):
return [cfg.to_dict() for cfg in self.all_settings]
@staticmethod
def parse(exp_settings: Sequence[Dict[str, bool]]) -> ExperimentSettings:
return ExperimentSettings(
[ExperimentSettings.single_setting(**cfg) for cfg in exp_settings]
)
@dataclass(frozen=True)
class ProcessConfig:
device: int = field(default=-1)
verbose: bool = field(default=0)
max_epoch: int = field(default=1000)
patience: int = field(default=1000)
dataloader_num_process: int = field(default=1)
save_model_condition: Sequence[Dict[str, Any]] = field(default_factory=list)
def match_save_model_condition(self, config: Dict[str, Any]):
if not self.save_model_condition:
return True
for condition in self.save_model_condition:
matched = True
for key, value in condition.items():
if key not in config:
matched = False
elif value != config[key]:
matched = False
if not matched:
break
if matched:
return True
return False
def update(self, config: Dict[str, Any]):
config["device"] = self.device
config["verbose"] = self.verbose
config["max_epoch"] = self.max_epoch
config["patience"] = self.patience
config["dataloader_num_process"] = self.dataloader_num_process
config["save_model"] = self.match_save_model_condition(config)
return config
@dataclass(frozen=True)
class FrameworkConfigParser:
seed: RangeGenerator
fold: RangeGenerator
model: ModelConfig
data: DataConfig
experiment_settings: ExperimentSettings
process: ProcessConfig
def generate(self):
for model, data, exp_setting in product(
self.model.generate(),
self.data.generate(),
self.experiment_settings.generate(),
):
config = {
"seed": self.seed.generate(),
"fold": self.fold.generate(),
**model,
**data,
**exp_setting,
}
config = self.process.update(config)
yield config
@staticmethod
def parse(
seed: Dict[str, int],
fold: Dict[str, Any],
model: Sequence[Dict[str, Any]],
data: Sequence[Dict[str, Any]],
experiment_settings: Sequence[Dict[str, bool]],
process: Dict[str, Any],
) -> FrameworkConfigParser:
return FrameworkConfigParser(
seed=RangeGenerator.parse(seed),
fold=RangeGenerator.parse(fold),
model=ModelConfig.parse(model),
data=DataConfig.parse(data),
experiment_settings=ExperimentSettings.parse(experiment_settings),
process=ProcessConfig(**process),
)