-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter_4.qmd
731 lines (490 loc) · 16.1 KB
/
Chapter_4.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
---
title: "Chapter 4: Subsetting"
format:
html:
number-sections: true
theme: simplex
code-fold: false
toc: true
link-external-newwindow: true
---
## Subsetting in R
### Preliminary concepts
Subsetting allows you to pull out the pieces of an object you are interested in.
**6 ways** of subsetting atomic vectors
- Positive integers\*
- Negative integers
- Logical vectors
- Nothing
- Zero
- Character vectors
(\*Factors are *not* treated specially -subsetting uses the underlying integer vector)
**3 operators:**
1. [
2. [[
3. $
**Subsetting** can be combined **with** **assignment**
⏩ OVERVIEW:
- Subsetting **multiple elements**
- Subsetting **single elements**
- Subsetting **with assignment**
- Further **applications**
### Selecting multiple elements
#### Atomic Vectors
```{r}
x <- c(2.1, 4.2, 3.3, 5.4)
```
1. With **positive integers**
```{r}
# Return element at specified position
x[c(3, 1)]
# Duplicate indices will duplicate values
x[c(1, 1)]
# Real numbers are silently truncated to integers
x[c(2.1, 2.9)]
```
2. With **negative integers**
```{r}
# To exclude elements at specified positions
x[-c(3, 1)]
```
Note that they cannot be mixed with positive integers
3. With **logical vectors**
```{r}
# Return element where the corresponding logical value is TRUE
x[c(TRUE, TRUE, FALSE, FALSE)]
```
When the logical vector contains a missing value (NA):
```{r}
# Missing value in the index returns a missing value also in the output
x[c(TRUE, TRUE, NA, FALSE)]
```
::: callout-note
**Recycling rules**: when you subset a vector using a vector of a different length, R recycles the shorter of the two to the length of the longer
:::
```{r}
x[c(TRUE, FALSE)]
#Equivalent to
x[c(TRUE, FALSE, TRUE, FALSE)]
```
4. With **nothing**
More useful for 2D objects (e.g., data frames) than for 1D vectors
```{r}
# Return the original vector
x[]
```
5. With **character vectors**
To be used with named vectors
```{r}
#Return element with matching names
(y <- setNames(x, letters[1:4]))
y[c("a")]
# Like integer indices, you can repeat indices
y[c("a", "a", "a")]
```
When subsetting with [, names are always matched exactly..if no match, return NA
6. With **zero**
```{r}
#Returns a zero-length vector
x[0]
```
#### Lists
same way as subsetting an atomic vector.
- [ always returns a list
- [[ and $ pull out elements of a list
#### Higher dimensional objects
**3 ways of subsetting**:
1\. With multiple vectors
2\. With single vector
3\. With a matrix
**Matrices (2D) and arrays (\>2D)**
Supply an index for each dimension separated by comma
```{r}
a <- matrix(1:9, nrow = 3)
colnames(a) <- c("A", "B", "C")
a[1:2, ]
a[c(TRUE, FALSE, TRUE), c("B", "A")]
a[0, -2]
```
In R, subsetting a matrix (or array) using a single vector of indices treats the matrix as if it were a one-dimensional vector in column-major order (i.e., column-wise order). This means it traverses the matrix column by column, rather than row by row.
```{r}
vals <- outer(1:5, 1:5, FUN = "paste", sep = ",")
vals
vals[c(4, 15)]
```
You can also subset higher-dimensional data structures with an integer matrix
```{r}
select <- matrix(ncol = 2, byrow = TRUE, c(1, 1, 3, 1,2, 4 ))
vals[select]
```
#### **Data frames and tibbles**
- When subsetting with a single index, they behave like lists and index the columns
- When subsetting with two indices, they behave like matrices
```{r}
df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])
df[df$x == 2, ]
df[c(1, 3), ]
# There are two ways to select columns from a data frame # Like a list
df[c("x", "z")]
# Like a matrix df[, c("x", "z")]
df[, c("x", "z")]
# There's an important difference if you select a single
# column: matrix subsetting simplifies by default, list
# subsetting does not.
str(df["x"])
str(df[, "x"])
```
#### **Dimensionality**
::: callout-note
**Dimensionality reduction**: when you subset with [, [ simplifies the results to the lowest possible dimensionality.
:::
```{r}
#Both return a 1D vector
a[1, ]
a[1, 1]
```
To preserve the original dimensionality, you must use drop = FALSE
```{r}
#Example with data frames
df <- data.frame(a = 1:2, b = 1:2)
str(df[, "a"])
str(df[, "a", drop = FALSE])
```
✳️ Why can 'drop = TRUE' by default be a problem?
- When you subset a 2D matrix or dataframe and the result has only one row or column, R simplifies the result to the lowest possible dimensionality \--\> from 2D df to 1D integer vector. This is a problem when e.g., you write a function that works on df (of 2D), but after subsetting it doesn't work anymore -because the df became a 1D vector.
Factor subsetting also has a drop argument, but it controls whether or not levels are preserved, default is drop = FALSE
```{r}
z <- factor(c("a", "b"))
z[1]
z[1, drop = TRUE]
```
### Selecting single elements
#### **2 operators:**
- [[ extracts a single item
- $ shortcut for x[["y"]], commonly used to access var in df
**[[** important when working with lists. As opposed to [ -which always return a *smaller* list- it extract the element itself.
Recommended for atomic vectors too when getting single value
```{r}
x <- list(1:3, "a", 4:6)
# How to subset a single element?
# Etiher a list OR the content - this is the difference between [ and [[
```
**NOTE:**
Because [[ can return only a single item, you must use it with either a single positive integer or a single string. If you use a vector with [[ , it will *subset recursively,* i.e. x[[c(1, 2)]] is equivalent to x[[1]][[2]] .
#### **Useful comparisons between $ and [[:**
❗ It is a mistake to use it when you have the col name stored in a variable
```{r}
var <- "cyl" # Doesn't work - mtcars$var translated to mtcars[["var"]]
mtcars$var
# Instead use [[
mtcars[[var]]
```
❗ *
This is about how $ and [[ handle element names; e.g., useful whit named lists. The **\$** operator allows for **partial matching** of element names within a list or data frame. This means that if you provide an incomplete name that matches the beginning of a longer name, \$ will still return a result. The **\[\[** operator requires an **exact match** of the element name
```{r}
x <- list(abc = 1)
x$a
x[["a"]]
# To avoid this behaviour set the global option warnPartialMatchDollar to TRUE
# Also, tibbles never do partial matching as opposed to df
```
#### Missing and out-of-bound indices
What happens with [[ when you use an "invalid" index?
You can get inconsistent results -it depends on the object you are subsetting and the index used
![](oob_recap.png)
```{r}
# When the element is missing an alternative is to rely on purrr
# purrr::pluck() -always returns NULL
# purrr::chuck() -always throw error
```
Examples:
- Zero-length object: This could be NULL or logical()
- Out-of-bounds values (OOB): Indices that exceed the length of the vector or list
- Missing values: Such as NA_integer\_
#### \@ and slot()
\@: equivalent to \$ for S4 objects
slot(): equivalent to [[ for S4 objects
### Subsetting and assignment -Subassignment
Example of modifying elements of a vector
```{r}
x <- 1:5
x[c(1, 2)] <- c(101, 102)
# recommend that you make sure that length(value) is the same as length(x[i]) , and that i is unique (R will recycle if needed and the rules can be complex)
```
Example of removing element from a list
```{r}
x <- list(a = 1, b = 2)
x[["b"]] <- NULL
str(x)
# To add a literal NULL
y <- list(a = 1, b = 2)
y["b"] <- list(NULL)
str(y)
```
Subsetting with nothing can be useful with assignment because it preserves the structure of the original object.
```{r}
# here it's changing the content of mtcars
mtcars[] <- lapply(mtcars, as.integer)
is.data.frame(mtcars)
# here it's changing the object mtcars is bound to
mtcars <- lapply(mtcars, as.integer)
is.data.frame(mtcars)
```
### Comparing speed and performance
```{r}
library(data.table)
library(tibble)
library(collapse)
library(microbenchmark)
library(highcharter)
size <- 1e5
df <- data.frame(
x = runif(size),
y = runif(size),
id = sample(letters, size, replace = TRUE)
)
dt <- as.data.table(df)
tb <- as_tibble(df)
lst <- list(x = runif(size),
y = runif(size),
id = sample(letters, size, replace = TRUE))
# Benchmarking various subsetting operations
bench <- microbenchmark::microbenchmark(
times = 100,
# Base R subsetting for data.frame
df_base = {
df[df$x > 0.5 & df$y < 0.5, ]
},
# Base R subsetting for data.table
dt_base = {
dt[dt$x > 0.5 & dt$y < 0.5]
},
# Base R subsetting for tibble
tb_base = {
tb[tb$x > 0.5 & tb$y < 0.5, ]
},
# Using collapse package with data.frame
df_clp = {
df |> fsubset(x > 0.5 & y < 0.5)
},
# Using collapse package with data.table
dt_clp = {
dt |> fsubset(x > 0.5 & y < 0.5)
},
# Using collapse package with tibble
tb_clp = {
tb |> fsubset(x > 0.5 & y < 0.5)
},
# Using data.table package with data.table
dt_dt = {
dt[x > 0.5 & y < 0.5]
}
# Subsetting lists using base R
)
if (requireNamespace("highcharter")) {
hc_dt <- highcharter::data_to_boxplot(bench,
time,
expr,
add_outliers = FALSE,
name = "Time in milliseconds")
highcharter::highchart() |>
highcharter::hc_xAxis(type = "category") |>
highcharter::hc_chart(inverted = TRUE) |>
highcharter::hc_add_series_list(hc_dt)
} else {
boxplot(bench, outline = FALSE)
}
```
#### Boolean algebra vs sets (i.e., logical vs integer subsetting)
::: callout-note
Using set operations is more effective when:
- You want to find the first (or last) TRUE
- You have very few TRUE s and very many FALSE s; a set representation may be faster and require less storage.
:::
**Why**:
Sets or indices allow direct access to specific positions, making it faster to locate the first or last TRUE value. Operations designed to find the first TRUE can exit early once the condition is met, avoiding unnecessary computations.
*note:*: which() allows you to convert a Boolean representation to an integer representation
```{r}
(x1 <- 1:10 %% 2 == 0)
(x2 <- which(x1))
(y1 <- 1:10 %% 5 == 0)
(y2 <- which(y1))
x1 & y1
intersect(x2, y2)
x1 | y1
union(x2, y2)
x1 & !y1
setdiff(x2, y2)
xor(x1, y1)
setdiff(union(x2, y2), intersect(x2, y2))
```
Common mistake is to use x[which(y)] instead of x\[y\] -result is exactly the same but 2 differences:
- When the logical vector contains NA , logical subsetting replaces these values with NA while which() drops these values
- x\[-which(y)\] is not equivalent to x\[!y\] : if y is all FALSE, which(y) will be integer(0) and -integer(0) is still integer(0) , so you'll get no values, instead of all values.
In general, avoid switching from logical to integer subsetting unless you want, for example, the first or last TRUE value.
**More Examples to compare performance**:
```{r}
# Large logical vector
vec <- sample(c(TRUE, FALSE), size = 1e6, replace = TRUE)
# integer subsetting to find the first TRUE
first_true_base <- which(vec)[1]
# logical subsetting
first_true_set <- match(TRUE, vec)
#match(TRUE, vec) can be faster because it stops as soon as it finds the first TRUE, whereas which(vec)[1] computes all TRUE indices first and then selects the first one.
```
When a dataset has very few TRUE values (sparse data) and many FALSE values, using set representations can be more efficient both in terms of speed and memory. Indices represent the positions of TRUE values, saving memory by not storing the FALSE values. Operations on sets typically faster because they involve fewer elements.
```{r}
# Sparse logical vector
vec <- rep(FALSE, 1e6)
vec[sample(1:1e6, 10)] <- TRUE # Only 10 TRUE values
# logical
subset_base <- vec[vec == TRUE]
# integer
true_indices <- which(vec)
subset_set <- vec[true_indices]
```
```{r}
library(data.table)
library(tibble)
library(collapse)
library(microbenchmark)
library(highcharter)
# Set the size for the test data
size <- 1e5
# Create a data frame and convert it to data.table and tibble
df <- data.frame(
x = runif(size),
y = runif(size),
id = sample(letters, size, replace = TRUE)
)
dt <- as.data.table(df)
tb <- as_tibble(df)
# Logical vector with sparse TRUE values
logical_vector <- rep(FALSE, size)
logical_vector[sample(1:size, 100)] <- TRUE # Only 100 TRUE values
# Benchmarking logical vs integer subsetting
bench <- microbenchmark::microbenchmark(
times = 100,
# Logical subsetting for data.frame
df_logical = {
df[logical_vector, ]
},
# Integer subsetting for data.frame
df_integer = {
df[which(logical_vector), ]
},
# Logical subsetting for data.table
dt_logical = {
dt[logical_vector]
},
# Integer subsetting for data.table
dt_integer = {
dt[which(logical_vector)]
},
# Logical subsetting for tibble
tb_logical = {
tb[logical_vector, ]
},
# Integer subsetting for tibble
tb_integer = {
tb[which(logical_vector), ]
}
)
# Visualization using highcharter
if (requireNamespace("highcharter", quietly = TRUE)) {
hc_dt <- highcharter::data_to_boxplot(bench,
time,
expr,
add_outliers = FALSE,
name = "Time in milliseconds")
highcharter::highchart() |>
highcharter::hc_xAxis(type = "category") |>
highcharter::hc_chart(inverted = TRUE) |>
highcharter::hc_add_series_list(hc_dt)
} else {
boxplot(bench, outline = FALSE, main = "Logical vs Integer Subsetting Performance", ylab = "Time (milliseconds)", las = 2)
}
```
### Subsetting - Some applications
#### Character subsetting
##### Lookup tables
These are usually named vectors or lists, useful when you want to map values from one object to another. For example,
```{r}
x <- c("m", "f", "u", "f", "f", "m", "m")
lookup <- c(m = "Male", f = "Female", u = NA)
lookup[x]
#Can use unname() if you don't want names in the result
unname(lookup[x])
```
##### Removing columns from data frames
There are two ways of removing columns:
```{r}
# Option 1 - Set it to NULL
df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])
df$z <- NULL
# Option 2 - Subset the columns you want
df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])
df[c("x", "y")]
```
If you only know the columns you do not want (e.g., "z"):
```{r}
df[setdiff(names(df), "z")]
```
#### Integer subsetting
##### Lookup tables - matching by hand
Suppose you have a more complex lookup table, i.e., with multiple columns of information.
For example, suppose you have a vector of integer grades and a table that describes their property:
```{r}
grades <- c(1, 2, 2, 3, 1)
info <- data.frame(
grade = 3:1,
desc = c("Excellent", "Good", "Poor"),
fail = c(F, F, T)
)
```
say we want to have a row for each value in grades. A way to do this is by combining match() and integer subsetting
```{r}
id <- match(grades, info$grade)
#return position where each grade is found in info$grade
id
info[id, ]
```
##### Random samples
You can use integer indices to randomly sample a vector or data frame.
```{r}
# use sample(n) to generate a random permutation of 1:n
df <- data.frame(x = c(1, 2, 3, 1, 2), y = 5:1, z = letters[1:5])
# Randomly reorder
df[sample(nrow(df)), ]
# Select 3 random rows
df[sample(nrow(df), 3), ]
# Select 6 bootstrap replicates
df[sample(nrow(df), 6, replace = TRUE), ]
```
##### Ordering
order() takes a vector as its input and returns an integer vector describing how to order the subsetted vector
```{r}
x <- c("b", "c", "a")
order(x)
x[order(x)]
# can also change the order from ascending to descending by using decreasing = TRUE
order(x, decreasing = TRUE)
x[order(x, decreasing = TRUE)]
x <- c("b", NA, "c", "a")
order(x)
x[order(x)]
# missing values will be put at the end of the vector
# you can remove them with na.last = NA
x[order(x, na.last = NA)]
# or you can put them at the front
x[order(x, na.last = FALSE)]
```
For two or more dimensions, order() and integer subsetting makes it easy to order either the rows or columns of an object:
```{r}
df2 <- df[sample(nrow(df)), 3:1]
df2
# order rows
df2[order(df2$x), ]
# order cols
df2[, order(names(df2))]
```