|
| 1 | +import nltk |
| 2 | + |
| 3 | +from nltk.tokenize import word_tokenize |
| 4 | +from nltk.tokenize import sent_tokenize |
| 5 | +from nltk.corpus import stopwords |
| 6 | +import string |
| 7 | +from nltk.stem.lancaster import LancasterStemmer |
| 8 | + |
| 9 | + |
| 10 | +name_list = [] |
| 11 | +location_list = [] |
| 12 | +month_list = [] |
| 13 | +time_list = [] |
| 14 | +occupation_list = [] |
| 15 | + |
| 16 | +stopwordSet = stopwords.words('english') |
| 17 | +morePunctuations = set(['``','"','...',"''","n't","'re","'s","--"]) |
| 18 | +punctuationSet = set(string.punctuation) | morePunctuations |
| 19 | +lancaster_stemmer = LancasterStemmer() |
| 20 | + |
| 21 | + |
| 22 | +def parse_story(story_filename): |
| 23 | + story_dict = {} |
| 24 | + with open(story_filename) as myfile: |
| 25 | + parts = myfile.read().split("TEXT:") |
| 26 | + |
| 27 | + headline = parts[0].splitlines()[0] |
| 28 | + date = parts[0].splitlines()[1] |
| 29 | + storyid = parts[0].splitlines()[2] |
| 30 | + text = sent_tokenize(parts[1].lstrip("\n").replace("\n"," ")) |
| 31 | + story_dict[(headline,date,storyid)] = text |
| 32 | + return story_dict |
| 33 | + |
| 34 | + |
| 35 | +def removeStopWordsAndTagPOS(story_dict): |
| 36 | + storyWithoutStopWords_dict = {} |
| 37 | + storyPOS_dict = {} |
| 38 | + for key in story_dict: |
| 39 | + text = story_dict[key] |
| 40 | + for line in text: |
| 41 | + words = word_tokenize(line) |
| 42 | + lineWithoutStopWord = [] |
| 43 | + for word in words: |
| 44 | + if word.lower() not in stopwordSet: |
| 45 | + if word.lower() not in punctuationSet: |
| 46 | + lineWithoutStopWord.append(word) |
| 47 | + storyWithoutStopWords_dict[line] = lineWithoutStopWord |
| 48 | + storyPOS_dict[line] = nltk.pos_tag(lineWithoutStopWord) |
| 49 | + |
| 50 | + return storyWithoutStopWords_dict, storyPOS_dict |
| 51 | + |
| 52 | +def camel(s): |
| 53 | + return (s != s.lower() and s != s.upper()) |
| 54 | + |
| 55 | +def contains_proper_noun(question): |
| 56 | + proper_noun = "" |
| 57 | + wordsInAQuestion = word_tokenize(question) |
| 58 | + questionWithoutStopWord = [] |
| 59 | + for word in wordsInAQuestion: |
| 60 | + if word.lower() not in stopwordSet: |
| 61 | + if word.lower() not in punctuationSet: |
| 62 | + questionWithoutStopWord.append(word) |
| 63 | + |
| 64 | + for word in questionWithoutStopWord: |
| 65 | + if (camel(word)): |
| 66 | + proper_noun = proper_noun +" "+ word |
| 67 | + |
| 68 | + proper_noun_list = proper_noun.split() |
| 69 | + for each_proper_noun in proper_noun_list: |
| 70 | + if any(each_proper_noun in s for s in name_list): |
| 71 | + return True |
| 72 | + else: |
| 73 | + return False |
| 74 | + |
| 75 | + |
| 76 | +def semantic_classes(name_filename): |
| 77 | + with open(name_filename+"names.txt") as f: |
| 78 | + name_list.append(f.read().splitlines()) |
| 79 | + # print(type(name_list)) |
| 80 | + |
| 81 | + with open(name_filename+"location.txt") as f: |
| 82 | + location_list.append(f.read().splitlines()) |
| 83 | + |
| 84 | + with open(name_filename+"month.txt") as f: |
| 85 | + month_list.append(f.read().lower().splitlines()) |
| 86 | + |
| 87 | + with open(name_filename+"time.txt") as f: |
| 88 | + time_list.append(f.read().lower().splitlines()) |
| 89 | + |
| 90 | + with open(name_filename+"occupation.txt") as f: |
| 91 | + occupation_list.append(f.read().lower().splitlines()) |
| 92 | +# print(occupation_list) |
| 93 | + |
| 94 | + |
| 95 | +def contains_name_word(sent): |
| 96 | + proper_noun = "" |
| 97 | + wordsInASent = word_tokenize(sent) |
| 98 | + sentWithoutStopWord = [] |
| 99 | + for word in wordsInASent: |
| 100 | + if word.lower() not in stopwordSet: |
| 101 | + if word.lower() not in punctuationSet: |
| 102 | + sentWithoutStopWord.append(word) |
| 103 | + |
| 104 | + if any("name" in s for s in sentWithoutStopWord): |
| 105 | + return True |
| 106 | + else: |
| 107 | + return False |
| 108 | + |
| 109 | +def contains_name_occupation(sent): |
| 110 | + proper_noun = "" |
| 111 | + wordsInASent = word_tokenize(sent) |
| 112 | + sentWithoutStopWord = [] |
| 113 | + for word in wordsInASent: |
| 114 | + if word.lower() not in stopwordSet: |
| 115 | + if word.lower() not in punctuationSet: |
| 116 | + sentWithoutStopWord.append(word) |
| 117 | + |
| 118 | + for word in sentWithoutStopWord: |
| 119 | + if (camel(word)): |
| 120 | + proper_noun = proper_noun +" "+ word |
| 121 | + |
| 122 | + proper_noun_list = proper_noun.split() |
| 123 | + |
| 124 | + for each_proper_noun in proper_noun_list: |
| 125 | + if any(each_proper_noun in s for s in name_list): |
| 126 | + return True |
| 127 | + |
| 128 | + for word in sentWithoutStopWord: |
| 129 | + if any(word in s for s in occupation_list): |
| 130 | + # print(word) |
| 131 | + return True |
| 132 | + return False |
| 133 | + |
| 134 | + |
| 135 | +def who_rule(question, sent, storyPOS_dict): |
| 136 | + score = 0 |
| 137 | + status = False |
| 138 | + score = score+ wordMatch(question,sent,storyPOS_dict) |
| 139 | + if(not contains_proper_noun(question) and contains_proper_noun(sent)): |
| 140 | + score = score + 6 |
| 141 | + if (not contains_proper_noun(question) and contains_name_word(sent)): |
| 142 | + score = score + 4 |
| 143 | + status = contains_name_occupation(sent) |
| 144 | + if (status): |
| 145 | + score = score + 4 |
| 146 | + # print(score) |
| 147 | + |
| 148 | +def when_rule(question, sent): |
| 149 | + print() |
| 150 | + |
| 151 | +def data_forward(questions_data,story_dict): |
| 152 | + storyWithoutStopWords_dict,storyPOS_dict = removeStopWordsAndTagPOS(story_dict) |
| 153 | + |
| 154 | + for question in questions_data: |
| 155 | + for story_key in story_dict: |
| 156 | + text_list = story_dict[story_key] |
| 157 | + wordMatch(question[1],text_list,storyPOS_dict) |
| 158 | + for sent in text_list: |
| 159 | + who_rule(question[1],sent,storyPOS_dict) |
| 160 | + |
| 161 | +def wordMatch(question, text, storyPOS_dict): |
| 162 | + wordsInAQuestion = word_tokenize(question) |
| 163 | + rootsInAQuestion = set() |
| 164 | + for word in wordsInAQuestion: |
| 165 | + root = lancaster_stemmer.stem(word) |
| 166 | + rootsInAQuestion.add(root) |
| 167 | + |
| 168 | + for line in storyPOS_dict: |
| 169 | + verbmatch_score = 0 |
| 170 | + rootmatch_score = 0 |
| 171 | + scoreOfALine = {} |
| 172 | + for (word,tag) in storyPOS_dict[line]: |
| 173 | + if 'V' in tag: |
| 174 | + verb_root = lancaster_stemmer.stem(word) |
| 175 | + if verb_root in rootsInAQuestion: |
| 176 | + verbmatch_score = verbmatch_score + 6 |
| 177 | + else: |
| 178 | + word_root = lancaster_stemmer.stem(word) |
| 179 | + if word_root in rootsInAQuestion: |
| 180 | + rootmatch_score = rootmatch_score + 3 |
| 181 | + scoreOfALine[line] = rootmatch_score + verbmatch_score |
| 182 | +# print(scoreOfALine) |
| 183 | +# print("\n") |
| 184 | + |
| 185 | + |
| 186 | +def main(): |
| 187 | + input_path = "/Users/roshaninagmote/Downloads/sample/" |
| 188 | + input_file = open(input_path+"/input.txt") |
| 189 | + semantic_classes("/Users/roshaninagmote/PycharmProjects/question-answers/") |
| 190 | + |
| 191 | + |
| 192 | + input_data = input_file.read().splitlines() |
| 193 | + path = input_data[0] |
| 194 | + |
| 195 | + for i in range(1,len(input_data)): |
| 196 | + |
| 197 | + each_story = input_data[i]+".story" |
| 198 | + each_question = input_data[i]+".questions" |
| 199 | + story_file = open(input_path+each_story) |
| 200 | + questions_file = open(input_path+each_question) |
| 201 | + story_data = story_file.read() |
| 202 | + questions_data_raw = questions_file.read().splitlines() |
| 203 | + questions_total = filter(None, questions_data_raw) |
| 204 | + |
| 205 | + que = questions_file.read() |
| 206 | + |
| 207 | + questions_data = [] |
| 208 | + for j in range(0,len(questions_total),3): |
| 209 | + question_temp = [] |
| 210 | + quesid = questions_total[j].split(":")[1].lstrip(" ") |
| 211 | + question_temp.append(quesid) |
| 212 | + ques = questions_total[j+1].split(":")[1].lstrip(" ") |
| 213 | + question_temp.append(ques) |
| 214 | + question_temp.append(questions_total[j+2]) |
| 215 | + |
| 216 | + questions_data.append(question_temp) |
| 217 | + |
| 218 | + |
| 219 | + story_dict = parse_story(input_path+each_story) |
| 220 | + # print(story_dict) |
| 221 | + data_forward(questions_data,story_dict) |
| 222 | + print("\n") |
| 223 | + |
| 224 | +if __name__ == "__main__": |
| 225 | + main() |
| 226 | + |
| 227 | + |
| 228 | + if not any(word in question[1].lower() for word in quest_words): |
| 229 | + print("roshani") |
| 230 | + max_score_else = 0 |
| 231 | + for sent in text_list: |
| 232 | + current_score = wordMatch(question[1],sent,storyPOS_dict) |
| 233 | + if current_score > max_score_else: |
| 234 | + max_score_else = current_score |
| 235 | + answer = sent |
| 236 | + # print "in else", question[1], sent |
| 237 | + print "QuestionID:",question[0] |
| 238 | + print "Answer:", answer |
| 239 | + print("\n") |
0 commit comments