-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
97 lines (75 loc) · 3.51 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import requests
import pandas as pd
import streamlit as st
import time
import random
from sklearn.cluster import SpectralClustering
from sklearn.ensemble import RandomForestClassifier
from numpy import number
from tools import load_data
def get_stats() -> dict:
"""Load statistics from API"""
return requests.get('https://slot-ml.com/api/v1/users/4e5bd33034c6cf34acd47a679ed113f367c21d1c/stats').json()
def get_data() -> dict:
"""Push clusters information to API """
return requests.get(
'https://slot-ml.com/api/v1/users/4e5bd33034c6cf34acd47a679ed113f367c21d1c/vectors/?random').json()
def create_clusters(data: pd.DataFrame) -> pd.DataFrame:
"""Split data to several clusters"""
cls = SpectralClustering(35, n_init=5,
assign_labels='discretize',
affinity='nearest_neighbors',
random_state=0)
return pd.DataFrame(cls.fit_predict(data), columns=['pred'], index=data.index)
def create_classifier(data: pd.DataFrame) -> RandomForestClassifier:
train_data = data.set_index('id').select_dtypes(include=[number])
labels = create_clusters(train_data)
clf = RandomForestClassifier(max_depth=3, n_estimators=10, random_state=0)
clf.fit(train_data, labels['pred'])
return clf
def get_prediction(data: pd.DataFrame, clf: RandomForestClassifier):
"""Count probabilities of every class and return the max of ot."""
preds = clf.predict_proba(data.set_index('id').select_dtypes(include=[number]))
preds = pd.DataFrame(preds, index=data.id)
return preds.idxmax(axis=1)
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_pretrained():
"""Loads prepared data and preprocessor"""
return load_data()
def run_test_app():
"""
User interface working with test data. Take some information from the existing raw data,
count clusters and show statistical information from the main server.
..note:: Do not obtain any new data from the main server.
"""
UPDATING_PERIOD = 120
USE_CLUSTERS = False
with st.spinner("Loading pretrained models"):
#
data, preprocessor = load_pretrained()
raw_data = pd.read_csv('data/raw_data.csv', dtype=object)
if not USE_CLUSTERS:
clf = create_classifier(data)
st.header('New data stored in cluster:')
st.caption('New information loads every {} sec and includes in the cluster.'.format(UPDATING_PERIOD))
stats = get_stats()
main_table = st.table()
accuracy_title = st.subheader('During accuracy is {}'.format(stats.get('stats')[0].get('avg_accuracy')))
stats_json = st.json(stats)
while True:
with st.spinner("Preprocess data..."):
data = data.fillna(0)
data_upd_raw = raw_data.iloc[[random.randrange(raw_data.shape[0])], :]
data_upd = preprocessor.transform(data_upd_raw)
data = pd.concat([data, data_upd])
if USE_CLUSTERS:
preds = create_clusters(data.set_index('id').select_dtypes(include=[number]))
else:
preds = get_prediction(data_upd, clf)
main_table.write(preds.loc[preds.index.isin(data_upd_raw.id)].drop_duplicates())
stats = get_stats()
accuracy_title.write('New accuracy is {}'.format(stats.get('stats')[0].get('avg_accuracy')))
stats_json.write(stats)
time.sleep(UPDATING_PERIOD)
if __name__ == '__main__':
run_test_app()