-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
304 lines (240 loc) · 9.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import pickle
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
import time
CAPACITIES = {
10: 20.,
20: 30.,
50: 40.,
100: 50.
}
def set_random_seed(seed):
torch.manual_seed(seed)
def create_data_on_disk(graph_size, num_samples, is_save=True, filename=None, is_return=False, seed=1234):
"""Generate validation dataset (with SEED) and save
"""
set_random_seed(seed)
depo = torch.rand((num_samples, 2))
set_random_seed(seed)
graphs = torch.rand((num_samples, graph_size, 2))
set_random_seed(seed)
demand = torch.randint(low=1, high=10, size=(num_samples, graph_size), dtype=torch.float32) / CAPACITIES[graph_size]
if is_save:
save_to_pickle('./valsets/Validation_dataset_{}.pkl'.format(filename), (depo, graphs, demand))
if is_return:
return (depo, graphs, demand)
def save_to_pickle(filename, item):
"""Save to pickle
"""
with open(filename, 'wb') as handle:
pickle.dump(item, handle)
def read_from_pickle(path, return_data_set=True, num_samples=None):
"""Read dataset from file (pickle)
"""
objects = []
with (open(path, "rb")) as openfile:
while True:
try:
objects.append(pickle.load(openfile))
except EOFError:
break
objects = objects[0]
if return_data_set:
depo, graphs, demand = objects
if num_samples is not None:
return (depo[:num_samples], graphs[:num_samples], demand[:num_samples])
else:
return (depo, graphs, demand)
else:
return objects
def generate_data_onfly(num_samples=10000, graph_size=20):
"""Generate temp dataset in memory
"""
depo = torch.rand((num_samples, 2))
graphs = torch.rand((num_samples, graph_size, 2))
demand = torch.randint(low=1, high=10, size=(num_samples, graph_size), dtype=torch.float32) / CAPACITIES[graph_size]
return (depo, graphs, demand)
def get_results(train_loss_results, train_cost_results, val_cost, save_results=True, filename=None, plots=True):
epochs_num = len(train_loss_results)
df_train = pd.DataFrame(data={'epochs': list(range(epochs_num)),
'loss': np.array(train_loss_results),
'cost': np.array(train_cost_results),
})
df_test = pd.DataFrame(data={'epochs': list(range(epochs_num)),
'val_сost': np.array(val_cost)})
if save_results:
df_train.to_excel('train_results_{}.xlsx'.format(filename), index=False)
df_test.to_excel('test_results_{}.xlsx'.format(filename), index=False)
if plots:
plt.figure(figsize=(15, 9))
ax = sns.lineplot(x='epochs', y='loss', data=df_train, color='salmon', label='train loss')
ax2 = ax.twinx()
sns.lineplot(x='epochs', y='cost', data=df_train, color='cornflowerblue', label='train cost', ax=ax2)
sns.lineplot(x='epochs', y='val_сost', data=df_test, palette='darkblue', label='val cost').set(ylabel='cost')
ax.legend(loc=(0.75, 0.90), ncol=1)
ax2.legend(loc=(0.75, 0.95), ncol=2)
ax.grid(axis='x')
ax2.grid(True)
plt.savefig('learning_curve_plot_{}.jpg'.format(filename))
plt.show()
class FastTensorDataLoader:
"""
A DataLoader-like object for a set of tensors that can be much faster than
TensorDataset + DataLoader because dataloader grabs individual indices of
the dataset and calls cat (slow).
Source: https://discuss.pytorch.org/t/dataloader-much-slower-than-manual-batching/27014/6
"""
def __init__(self, *tensors, batch_size=32, shuffle=False):
"""
Initialize a FastTensorDataLoader.
:param *tensors: tensors to store. Must have the same length @ dim 0.
:param batch_size: batch size to load.
:param shuffle: if True, shuffle the data *in-place* whenever an
iterator is created out of this object.
:returns: A FastTensorDataLoader.
"""
assert all(t.shape[0] == tensors[0].shape[0] for t in tensors)
self.tensors = tensors
self.dataset_len = self.tensors[0].shape[0]
self.batch_size = batch_size
self.shuffle = shuffle
# Calculate # batches
n_batches, remainder = divmod(self.dataset_len, self.batch_size)
if remainder > 0:
n_batches += 1
self.n_batches = n_batches
def __iter__(self):
if self.shuffle:
r = torch.randperm(self.dataset_len)
self.tensors = [t[r] for t in self.tensors]
self.i = 0
return self
def __next__(self):
if self.i >= self.dataset_len:
raise StopIteration
batch = tuple(t[self.i:self.i+self.batch_size] for t in self.tensors)
self.i += self.batch_size
return batch
def __len__(self):
return self.n_batches
def get_journey(batch, pi, title, ind_in_batch=0):
"""Plots journey of agent
Args:
batch: dataset of graphs
pi: paths of agent obtained from model
ind_in_batch: index of graph in batch to be plotted
"""
# Remove extra zeros
pi_ = get_clean_path(pi[ind_in_batch].numpy())
# Unpack variables
depo_coord = batch[0][ind_in_batch].numpy()
points_coords = batch[1][ind_in_batch].numpy()
demands = batch[2][ind_in_batch].numpy()
node_labels = ['(' + str(x[0]) + ', ' + x[1] + ')' for x in enumerate(demands.round(2).astype(str))]
# Concatenate depot and points
full_coords = np.concatenate((depo_coord.reshape(1, 2), points_coords))
# Get list with agent loops in path
list_of_paths = []
cur_path = []
for idx, node in enumerate(pi_):
cur_path.append(node)
if idx != 0 and node == 0:
if cur_path[0] != 0:
cur_path.insert(0, 0)
list_of_paths.append(cur_path)
cur_path = []
list_of_path_traces = []
for path_counter, path in enumerate(list_of_paths):
coords = full_coords[[int(x) for x in path]]
# Calculate length of each agent loop
lengths = np.sqrt(np.sum(np.diff(coords, axis=0) ** 2, axis=1))
total_length = np.sum(lengths)
list_of_path_traces.append(go.Scatter(x=coords[:, 0],
y=coords[:, 1],
mode="markers+lines",
name=f"path_{path_counter}, length={total_length:.2f}",
opacity=1.0))
trace_points = go.Scatter(x=points_coords[:, 0],
y=points_coords[:, 1],
mode='markers+text',
name='destinations',
text=node_labels,
textposition='top center',
marker=dict(size=7),
opacity=1.0
)
trace_depo = go.Scatter(x=[depo_coord[0]],
y=[depo_coord[1]],
text=['1.0'], textposition='bottom center',
mode='markers+text',
marker=dict(size=15),
name='depot'
)
layout = go.Layout(title='<b>Example: {}</b>'.format(title),
xaxis=dict(title='X coordinate'),
yaxis=dict(title='Y coordinate'),
showlegend=True,
width=1000,
height=1000,
template="plotly_white"
)
data = [trace_points, trace_depo] + list_of_path_traces
print('Current path: ', pi_)
fig = go.Figure(data=data, layout=layout)
fig.show()
def get_cur_time():
"""Returns local time as string
"""
ts = time.time()
return datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
def get_clean_path(arr):
"""Returns extra zeros from path.
Dynamical model generates duplicated zeros for several graphs when obtaining partial solutions.
"""
p1, p2 = 0, 1
output = []
while p2 < len(arr):
if arr[p1] != arr[p2]:
output.append(arr[p1])
if p2 == len(arr) - 1:
output.append(arr[p2])
p1 += 1
p2 += 1
if output[0] != 0:
output.insert(0, 0.0)
if output[-1] != 0:
output.append(0.0)
return output
def get_dev_of_mod(model):
return next(model.parameters()).device
def _open_data(path):
return open(path, 'rb')
def get_lhk_solved_data(path_instances, path_sols):
"""
- instances[i][0] -> depot(x, y)
- instances[i][1] -> nodes(x, y) * samples
- instances[i][2] -> nodes(demand) * samples
- instances[i][3] -> capacity (of vehicle) (should be the same for all in theory)
- sols[0][i][0] -> cost
- sols[0][i][1] -> path (doesn't include depot at the end)
- sols[1] -> ?
- sols[0][1][2] -> ?
"""
with _open_data(path_instances) as f:
instances_data = pickle.load(f)
with _open_data(path_sols) as f:
sols_data = pickle.load(f)
capacity_denominator = CAPACITIES[len(instances_data[0][1])]
depot_locs = (list(map(lambda x: x[0], instances_data))) # (samples, 2)
nodes_locs = (list(map(lambda x: x[1], instances_data))) # (samples, nodes, 2)
nodes_demand = (list(map(lambda x: list(map(lambda d: d/capacity_denominator, x[2])), instances_data))) # (samples, nodes)
instances = (depot_locs, nodes_locs, nodes_demand)
path_indices = list(map(lambda x: x[1], sols_data[0])) # (samples, path_len)
costs = list(map(lambda x: x[0], sols_data[0])) # (samples)
capacities = (list(map(lambda x: x[3], instances_data))) # (samples)
return instances, path_indices, costs, capacities