-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloop.cc
425 lines (375 loc) · 14 KB
/
loop.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <filesystem>
#include <fstream>
#include <immintrin.h>
#include <iostream>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
/* -----------------------
* get current time in sec
* ----------------------- */
double get_time() {
struct timespec ts[1];
clock_gettime(CLOCK_REALTIME, ts);
return ts->tv_sec + ts->tv_nsec * 1.0e-9;
}
// add debug
#ifdef ENABLE_PROFILING
#define BEFORE(name) \
double __start_##name = get_time(); \
printf("Start profiling: %s\n", #name);
#define AFTER(name) \
double __end_##name = get_time(); \
printf("End profiling: %s, Duration: %.8lf seconds\n", #name, \
__end_##name - __start_##name);
#else
#define BEFORE(name)
#define AFTER(name)
#endif
// Define constants
static const double PI = 3.14159265358979323846;
static const int FRAME_NUM = 100;
static const int DIM = 3;
static const int NUM_PARTICLES = 10000;
static const int MAX_NUM_PARTICLES_PER_CELL = 100;
static const double TIME_DELTA = 1.0 / 20.0;
static const double ESPILON = 1e-5;
static const double PARTICLE_RADIUS = 3.0;
static const double PARTICLE_RADIUS_IN_WORLD = PARTICLE_RADIUS / 20.0;
static const double GRAVITY[DIM] = {0.0, -10.0, 0.0};
static const double BOUNDARY_LOWER = 0.0;
static const double BOUNDARY_UPPER = 30.0;
static const double GENERATE_LOWER = 5.0;
static const double GENERATE_UPPER = 25.0;
static const double SPACING =
(GENERATE_UPPER - GENERATE_LOWER) / std::cbrt(NUM_PARTICLES);
static const double INIT_POS[DIM] = {
GENERATE_LOWER, BOUNDARY_UPPER - GENERATE_UPPER + GENERATE_LOWER - 0.5,
GENERATE_LOWER};
static const double CELL_SIZE = 2.51;
static const double CELL_RECPROCAL = 1.0 / CELL_SIZE;
// PBF parameters
static const double H = 1.1;
static const double MASS = 1.0;
static const double RHO0 = 1.0;
static const double LAMBDA_EPSILON = 100.0;
static const int PBF_NUM_ITERS = 5;
static const double CORR_DELTAQ_COEFF = 0.3;
static const double CORR_K = 0.001;
static const double NEIGHBOR_RADIUS = 1.05 * H;
static const double DAMPING_FACTOR = 0.01;
static const double ELASTICITY = 0.3;
static const double POLY6_FACTOR = 315.0 / (64.0 * PI);
static const double SPIKY_GRAD_FACTOR = -45.0 / PI;
// Define data structures
static std::vector<double> pos_x(NUM_PARTICLES), pos_y(NUM_PARTICLES),
pos_z(NUM_PARTICLES);
static std::vector<double> vel_x(NUM_PARTICLES), vel_y(NUM_PARTICLES),
vel_z(NUM_PARTICLES);
static std::vector<double> old_pos_x(NUM_PARTICLES), old_pos_y(NUM_PARTICLES),
old_pos_z(NUM_PARTICLES);
static std::vector<double> delta_x(NUM_PARTICLES), delta_y(NUM_PARTICLES),
delta_z(NUM_PARTICLES);
static std::vector<double> lambdas(NUM_PARTICLES);
static std::vector<std::vector<int>> neighbors(NUM_PARTICLES);
static inline int idx(int i, int d) { return i * DIM + d; }
// For hashing
struct TupleHash {
std::size_t operator()(const std::tuple<int, int, int> &t) const {
std::size_t h1 = std::hash<int>()(std::get<0>(t));
std::size_t h2 = std::hash<int>()(std::get<1>(t));
std::size_t h3 = std::hash<int>()(std::get<2>(t));
return h1 ^ (h2 << 1) ^ (h3 << 2);
}
};
static std::unordered_map<std::tuple<int, int, int>, std::vector<int>,
TupleHash>
grid;
// Utility to compute grid cell key
std::tuple<int, int, int> get_grid_key(double x, double y, double z) {
int cx = static_cast<int>(std::floor(x * CELL_RECPROCAL));
int cy = static_cast<int>(std::floor(y * CELL_RECPROCAL));
int cz = static_cast<int>(std::floor(z * CELL_RECPROCAL));
return std::make_tuple(cx, cy, cz);
}
inline void vec_add(double *a, const double *b, double scale = 1.0) {
for (int i = 0; i < DIM; ++i) {
a[i] += b[i] * scale;
}
}
inline void vec_copy(double *dest, const double *src) {
for (int i = 0; i < DIM; ++i) {
dest[i] = src[i];
}
}
// Boundary confine
inline void confine_to_boundary(double &x, double &y, double &z,
double *vx = nullptr, double *vy = nullptr,
double *vz = nullptr) {
// x
if (x < BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD) {
double overshoot = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD - x;
x = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD + overshoot * ELASTICITY;
if (vx)
*vx = -(*vx);
} else if (x > BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD) {
double overshoot = x - (BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD);
x = BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD - overshoot * ELASTICITY;
if (vx)
*vx = -(*vx);
}
// y
if (y < BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD) {
double overshoot = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD - y;
y = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD + overshoot * ELASTICITY;
if (vy)
*vy = -(*vy);
} else if (y > BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD) {
double overshoot = y - (BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD);
y = BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD - overshoot * ELASTICITY;
if (vy)
*vy = -(*vy);
}
// z
if (z < BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD) {
double overshoot = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD - z;
z = BOUNDARY_LOWER + PARTICLE_RADIUS_IN_WORLD + overshoot * ELASTICITY;
if (vz)
*vz = -(*vz);
} else if (z > BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD) {
double overshoot = z - (BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD);
z = BOUNDARY_UPPER - PARTICLE_RADIUS_IN_WORLD - overshoot * ELASTICITY;
if (vz)
*vz = -(*vz);
}
}
static inline double poly6_value(double r, double h) {
if (r >= h)
return 0.0;
double hh = h * h;
double x = (hh - r * r) / (hh * h);
return POLY6_FACTOR * x * x * x;
}
inline void spiky_gradient(double rx, double ry, double rz, double dist,
double h, double &gx, double &gy, double &gz) {
// Spiky kernel gradient
if (dist > 0.0 && dist < h) {
double x = (h - dist) / (h * h * h);
double g_factor = SPIKY_GRAD_FACTOR * x * x;
double inv_dist = 1.0 / dist;
gx = rx * g_factor * inv_dist;
gy = ry * g_factor * inv_dist;
gz = rz * g_factor * inv_dist;
} else {
gx = gy = gz = 0.0;
}
}
inline double compute_scorr(double dist, double h) {
// scorr_ij = -K * (poly6_value(||r_ij||)/ poly6_value(deltaQ))^4
if (dist >= h)
return 0.0;
double val = poly6_value(dist, h) / poly6_value(CORR_DELTAQ_COEFF * h, h);
// ^ val^4
val = val * val;
val = val * val;
return -CORR_K * val;
}
static void init_particles() {
int num_per_row = static_cast<int>(std::cbrt(NUM_PARTICLES));
int num_per_floor = num_per_row * num_per_row;
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
int floor = i / num_per_floor;
int row = (i % num_per_floor) / num_per_row;
int col = (i % num_per_floor) % num_per_row;
pos_x[i] = INIT_POS[0] + col * SPACING;
pos_y[i] = INIT_POS[1] + floor * SPACING;
pos_z[i] = INIT_POS[2] + row * SPACING;
neighbors[i].reserve(64);
vel_x[i] = vel_y[i] = vel_z[i] = 0.0;
}
}
static void update_grid() {
grid.clear();
grid.reserve(NUM_PARTICLES);
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
auto key = get_grid_key(pos_x[i], pos_y[i], pos_z[i]);
grid[key].push_back(i);
}
}
static void find_neighbors() {
for (int i = 0; i < NUM_PARTICLES; ++i) {
neighbors[i].clear();
auto cell_key = get_grid_key(pos_x[i], pos_y[i], pos_z[i]);
// Iterate over nearby cells
for (int dx = -1; dx <= 1; ++dx) {
for (int dy = -1; dy <= 1; ++dy) {
for (int dz = -1; dz <= 1; ++dz) {
auto neighbor_key = std::make_tuple(
std::get<0>(cell_key) + dx, std::get<1>(cell_key) + dy,
std::get<2>(cell_key) + dz);
auto it = grid.find(neighbor_key);
if (it == grid.end())
continue;
const auto &candidates = it->second;
for (int nidx : candidates) {
double dx_ = pos_x[nidx] - pos_x[i];
double dy_ = pos_y[nidx] - pos_y[i];
double dz_ = pos_z[nidx] - pos_z[i];
double dist_sq = dx_ * dx_ + dy_ * dy_ + dz_ * dz_;
if (dist_sq < (NEIGHBOR_RADIUS * NEIGHBOR_RADIUS) &&
dist_sq > 0.0) {
neighbors[i].push_back(nidx);
}
}
}
}
}
}
}
static void apply_gravity_and_update_positions() {
#pragma omp simd safelen(8) linear(i:1)
for (int i = 0; i < NUM_PARTICLES; ++i) {
// old_pos
old_pos_x[i] = pos_x[i];
old_pos_y[i] = pos_y[i];
old_pos_z[i] = pos_z[i];
}
for (int i = 0; i < NUM_PARTICLES; ++i) {
// v = v + g * dt
vel_x[i] += GRAVITY[0] * TIME_DELTA;
vel_y[i] += GRAVITY[1] * TIME_DELTA;
vel_z[i] += GRAVITY[2] * TIME_DELTA;
// x = x + v * dt
pos_x[i] += vel_x[i] * TIME_DELTA;
pos_y[i] += vel_y[i] * TIME_DELTA;
pos_z[i] += vel_z[i] * TIME_DELTA;
}
for (int i = 0; i < NUM_PARTICLES; ++i) {
confine_to_boundary(pos_x[i], pos_y[i], pos_z[i], &vel_x[i], &vel_y[i],
&vel_z[i]);
}
}
static void after_update() {
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
confine_to_boundary(pos_x[i], pos_y[i], pos_z[i]);
vel_x[i] = (pos_x[i] - old_pos_x[i]) / TIME_DELTA;
vel_y[i] = (pos_y[i] - old_pos_y[i]) / TIME_DELTA;
vel_z[i] = (pos_z[i] - old_pos_z[i]) / TIME_DELTA;
}
}
static void substep() {
BEFORE(compute_lambdas);
// Compute lambdas
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
double density = 0.0;
double sum_grad_sqr = 0.0;
double gx_i = 0.0, gy_i = 0.0, gz_i = 0.0;
for (int nidx : neighbors[i]) {
double rx = pos_x[i] - pos_x[nidx];
double ry = pos_y[i] - pos_y[nidx];
double rz = pos_z[i] - pos_z[nidx];
double dist_sq = rx * rx + ry * ry + rz * rz;
double dist = std::sqrt(dist_sq);
if (dist < H && dist > 0.0) {
double poly6 = poly6_value(dist, H);
density += MASS * poly6;
double gx, gy, gz;
spiky_gradient(rx, ry, rz, dist, H, gx, gy, gz);
gx_i += gx;
gy_i += gy;
gz_i += gz;
sum_grad_sqr += (gx * gx + gy * gy + gz * gz);
}
}
double constraint = (density / RHO0) - 1.0;
double grad_i_sq = (gx_i * gx_i + gy_i * gy_i + gz_i * gz_i);
sum_grad_sqr += grad_i_sq;
lambdas[i] = -constraint / (sum_grad_sqr + LAMBDA_EPSILON);
}
AFTER(compute_lambdas);
BEFORE(compute_position);
// Compute position deltas
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
double lambda_i = lambdas[i];
double dx_ = 0.0, dy_ = 0.0, dz_ = 0.0;
for (int nidx : neighbors[i]) {
double rx = pos_x[i] - pos_x[nidx];
double ry = pos_y[i] - pos_y[nidx];
double rz = pos_z[i] - pos_z[nidx];
double dist_sq = rx * rx + ry * ry + rz * rz;
double dist = std::sqrt(dist_sq);
if (dist < H && dist > 0.0) {
double lambda_j = lambdas[nidx];
double scorr_ij = compute_scorr(dist, H);
double gx, gy, gz;
spiky_gradient(rx, ry, rz, dist, H, gx, gy, gz);
dx_ += (lambda_i + lambda_j + scorr_ij) * gx;
dy_ += (lambda_i + lambda_j + scorr_ij) * gy;
dz_ += (lambda_i + lambda_j + scorr_ij) * gz;
}
}
delta_x[i] = dx_ / RHO0;
delta_y[i] = dy_ / RHO0;
delta_z[i] = dz_ / RHO0;
}
AFTER(compute_position);
BEFORE(apply_position);
// Apply position deltas
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
pos_x[i] += delta_x[i];
pos_y[i] += delta_y[i];
pos_z[i] += delta_z[i];
}
AFTER(apply_position);
BEFORE(update_velocity);
// Update velocity using XSPH
#pragma omp simd
for (int i = 0; i < NUM_PARTICLES; ++i) {
double vx_update = 0.0, vy_update = 0.0, vz_update = 0.0;
for (int nidx : neighbors[i]) {
double rx = pos_x[i] - pos_x[nidx];
double ry = pos_y[i] - pos_y[nidx];
double rz = pos_z[i] - pos_z[nidx];
double dist_sq = rx * rx + ry * ry + rz * rz;
double dist = std::sqrt(dist_sq);
if (dist < H && dist > 0.0) {
double q = (H - dist) / H;
double poly6 = POLY6_FACTOR * std::pow(q, 3);
vx_update += (vel_x[nidx] - vel_x[i]) * poly6;
vy_update += (vel_y[nidx] - vel_y[i]) * poly6;
vz_update += (vel_z[nidx] - vel_z[i]) * poly6;
}
}
vel_x[i] += DAMPING_FACTOR * vx_update;
vel_y[i] += DAMPING_FACTOR * vy_update;
vel_z[i] += DAMPING_FACTOR * vz_update;
}
AFTER(update_velocity);
}
static void save_to_csv(const std::string &filename, int /*frame*/) {
std::ofstream file(filename);
file << "x,y,z\n";
for (int i = 0; i < NUM_PARTICLES; ++i) {
file << pos_x[i] << "," << pos_y[i] << "," << pos_z[i] << "\n";
}
file.close();
}
int main() {
init_particles();
apply_gravity_and_update_positions();
update_grid();
find_neighbors();
substep();
return 0;
}