-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakeCV.py
executable file
·597 lines (472 loc) · 23.8 KB
/
makeCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#import gspread
import numpy as np
import json
import skywalker
from tqdm import tqdm
import copy
import sys
import time
import os
import requests
import urllib.request
import urllib.error
from urllib.parse import urlencode
import html
from database import papers, talks
from datetime import datetime
import shutil
import argparse
import warnings
#import ssl
#ssl._create_default_https_context = ssl._create_unverified_context
def hindex(citations):
return sum(x >= i + 1 for i, x in enumerate(sorted( list(citations), reverse=True)))
def pdflatex(filename):
os.system('pdflatex -interaction=nonstopmode -halt-on-error '+filename+' >/dev/null')
def checkinternet():
url = "http://www.google.com"
timeout = 5
connected = True
try:
requests.get(url, timeout=timeout)
except (requests.ConnectionError, requests.Timeout) as exception:
connected = False
return connected
def ads_citations(papers,testing=False, token=None):
tot = len(np.concatenate([papers[k]['data'] for k in papers]))
with tqdm(total=tot) as pbar:
for k in papers:
for p in papers[k]['data']:
if p['ads']:
if testing:
p['ads_citations'] = np.random.randint(0, 100)
p['ads_found'] = p['ads']
else:
n_retries=0
p['ads_citations'] = 0
p['ads_found'] = ""
encoded_query = urlencode({'q': p['ads'], 'fl': 'citation_count,bibcode'})
while n_retries<10:
try:
print(f"Querying: {encoded_query}\n")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="Unverified HTTPS request is being made to host")
r = requests.get("https://api.adsabs.harvard.edu/v1/search/query?{}".format(encoded_query), headers={'Authorization': 'Bearer ' + token})
q= r.json()['response']['docs']
if len(q)!=1:
raise ValueError("ADS error in "+b)
q=q[0]
if q['citation_count'] is not None:
p['ads_citations'] = q['citation_count']
else:
print("Warning: citation count is None.", p['ads'])
p['ads_citations'] = 0
p['ads_found'] = q['bibcode']
except:
retry_time = 2 #req.getheaders()["retry-in"]
print('ADS API error: retry in', retry_time, 's. -- '+p['ads'])
time.sleep(retry_time)
n_retries = n_retries + 1
if n_retries==11:
print('ADS API error: giving up -- '+p['ads'])
#raise ValueError("ADS error in "+p['ads'])
continue
else:
break
else:
p['ads_citations'] = 0
p['ads_found'] = ""
pbar.update(1)
return papers
def inspire_citations(papers,testing=False):
print('Get citations from INSPIRE')
tot = len(np.concatenate([papers[k]['data'] for k in papers]))
with tqdm(total=tot) as pbar:
for k in papers:
for p in papers[k]['data']:
if p['inspire']:
if testing:
p['inspire_citations'] = np.random.randint(0, 100)
else:
n_retries=0
while n_retries<10:
try:
req = urllib.request.urlopen("https://inspirehep.net/api/literature?q=texkey:"+p['inspire'])
except urllib.error.HTTPError as e:
if e.code == 429:
retry_time = 10 #req.getheaders()["retry-in"]
print('INSPIRE API error: retry in', retry_time, 's. -- '+p['inspire'])
time.sleep(retry_time)
n_retries = n_retries + 1
continue
else:
raise ValueError("INSPIRE error in "+p['inspire'])
else:
q = json.loads(req.read().decode("utf-8"))
n = len(q['hits']['hits'])
if n!=1:
raise ValueError("INSPIRE error in "+b)
p['inspire_citations']=q['hits']['hits'][0]['metadata']['citation_count']
break
else:
p['inspire_citations'] = 0
pbar.update(1)
return papers
def parsepapers(papers,filename="parsepapers.tex"):
print('Parse papers from database')
out=[]
for k in ['submitted','published','collab','others']:
i = len(papers[k]['data'])
if i>=1:
out.append("\\textcolor{color1}{\\textbf{"+papers[k]['label']+":}}")
out.append("\\vspace{-0.5cm}")
out.append("")
out.append("\cvitem{}{\small\hspace{-1cm}\\begin{longtable}{rp{0.3cm}p{15.8cm}}")
out.append("%")
for p in papers[k]['data']:
out.append("\\textbf{"+str(i)+".} & & \\textit{"+p['title'].strip(".")+".}")
out.append("\\newline{}")
out.append(p['author'].replace("R. Buscicchio","\\textbf{R. Buscicchio}").strip(".")+".")
out.append("\\newline{}")
line=""
if p['link']:
line +="\href{"+p['link']+"}"
if p['journal']:
line+="{"+p['journal'].strip(".")+"}. "
if 'erratum' in p.keys():
if p['errlink']:
line +="\href{"+p['errlink']+"}"
if p['erratum']:
line+="{Erratum: "+p['erratum'].strip(".")+"}. "
if p['arxiv']:
print(p['arxiv'])
line+="\href{https://arxiv.org/abs/"+p['arxiv'].split(":")[1].split(" ")[0]+"}{"+p['arxiv'].strip(".")+".}"
out.append(line)
if p['more']:
out.append("\\newline{}")
out.append("\\textcolor{color1}{$\\bullet$} "+p['more'].strip(".")+".")
out.append("\\vspace{0.09cm}\\\\")
out.append("%")
i=i-1
out.append("\end{longtable} }")
with open(filename,"w") as f: f.write("\n".join(out))
def parsetalks(talks,filename="parsetalks.tex"):
print('Parse talks from database')
out=[]
out.append("Invited talks marked with *.")
out.append("\\vspace{0.2cm}")
out.append("")
for k in ['conferences','seminars']: #,'lectures','posters','outreach']:
out.append("\\textcolor{color1}{\\textbf{"+talks[k]['label']+":}}")
out.append("\\vspace{-0.5cm}")
out.append("")
out.append("\cvitem{}{\small\hspace{-1cm}\\begin{longtable}{rp{0.3cm}p{15.8cm}}")
out.append("%")
i = len(talks[k]['data'])
for p in talks[k]['data']:
if p["invited"]:
mark="*"
else:
mark=""
out.append("\\textbf{"+str(i)+".} & "+mark+" & \\textit{"+p['title'].strip(".")+".}")
out.append("\\newline{}")
out.append(p['where'].strip(".")+", "+p['when'].strip(".")+".")
if p['more']:
out.append("\\newline{}")
out.append("\\textcolor{color1}{$\\bullet$} "+p['more'].strip(".")+".")
out.append("\\vspace{0.05cm}\\\\")
out.append("%")
i=i-1
out.append("\end{longtable} }")
with open(filename,"w") as f: f.write("\n".join(out))
def metricspapers(papers,filename="metricspapers.tex"):
print('Compute papers metrics')
out=[]
out.append("\cvitem{}{\\begin{tabular}{rcl}")
out.append("\\textcolor{mark_color}{\\textbf{Publications}}: & \hspace{0.3cm} & \\\\")
out.append("&\\textbf{"+str(len(papers['published']['data']))+"\, } & short-author papers published in major peer-reviewed journals\\\\")
first_author = []
for k in ['submitted','published']:
for p in papers[k]['data']:
if ("R. Buscicchio" not in p['author']) and ('LIGO Scientific Collaboration' not in p['author']):
raise ValueError("Looks like you're not an author:", p['title'])
first_author.append( p['author'].split("R. Buscicchio")[0]=="" )
out.append("& & (out of which \\textbf{"+str(np.sum(first_author))+"}\, first-authored papers).\\\\")
out.append("&\\textbf{"+str(len(papers['collab']['data']))+"} & collaboration papers, with substantial contribution, published in major peer-reviewed journals\\\\")
if len(papers['submitted']['data'])>1:
out.append("&\\textbf{"+str(len(papers['submitted']['data']))+"}& \, papers in submission stage,\\\\")
elif len(papers['submitted']['data'])==1:
out.append("&\\textbf{"+str(len(papers['submitted']['data']))+"}& \, paper in submission stage,")
# press_release = []
# for k in ['submitted','published', 'collab']: #, 'proceedings']:
# for p in papers[k]['data']:
# press_release.append("press release" in p['more'])
# out.append("and \\textbf{"+str(np.sum(press_release))+"} papers covered by press releases).\\\\")
out.append("&\\textbf{"+str(len(papers['others']['data']))+"}& \, other publications (thesis, white papers, long-authorlist reviews)")
out.append("\end{tabular} }")
ads_citations = np.concatenate([[p['ads_citations'] for p in papers[k]['data']] for k in papers])
inspire_citations = np.concatenate([[p['inspire_citations'] for p in papers[k]['data']] for k in papers])
max_citations = np.maximum(ads_citations,inspire_citations)
totalnumber = np.sum(max_citations)
print("\tTotal number of citations:", totalnumber)
hind = hindex(max_citations)
print("\th-index:", hind)
rounded = int(totalnumber/100)*100
out.append("\\textcolor{mark_color}{\\textbf{Total number of citations}}: >"+str(rounded)+".")
out.append("\\textcolor{mark_color}{\\textbf{h-index}}: "+str(hind)+" (using ADS and iNSPIRE).")
out.append("\\\\")
out.append("\\textcolor{mark_color}{\\textbf{Web links to list services}}:")
out.append("\href{https://ui.adsabs.harvard.edu/search/fq=%7B!type%3Daqp%20v%3D%24fq_doctype%7D&fq_doctype=(doctype%3A%22misc%22%20OR%20doctype%3A%22inproceedings%22%20OR%20doctype%3A%22article%22%20OR%20doctype%3A%22eprint%22)&q=%20author%3A%22Buscicchio%2C%20Riccardo%22&sort=citation_count%20desc%2C%20bibcode%20desc&p_=0}{\\textsc{ADS}};")
out.append("\href{https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=author%3AR.Buscicchio&ui-citation-summary=true}{\\textsc{iNSPIRE}};")
out.append("\href{http://arxiv.org/a/buscicchio_r_1.html}{\\textsc{arXiv}};")
out.append("\href{https://orcid.org/0000-0002-7387-6754}{\\textsc{orcid}}.")
with open(filename,"w") as f: f.write("\n".join(out))
def metricstalks(talks,filename="metricstalks.tex"):
print('Compute talks metrics')
out=[]
out.append("\cvitem{}{\\begin{tabular}{rcl}")
out.append("\\textcolor{mark_color}{\\textbf{Presentations}}: &\hspace{0.3cm} &")
out.append("\\textbf{"+str(len(talks['conferences']['data']))+"} talks at conferences,")
out.append("\\textbf{"+str(len(talks['seminars']['data']))+"} talks at department seminars,")
if ('posters' in talks.keys()) and (len(talks['posters']['data'])>0):
out.append("\\textbf{"+str(len(talks['posters']['data']))+"} posters at conferences,")
out.append("\\\\ & &")
invited = []
for k in ['conferences','seminars']:
for p in talks[k]['data']:
invited.append(p['invited'])
#plural = "s" if len(talks['lectures']['data'])>1 else ""
#out.append("(out of which \\textbf{"+str(np.sum(invited))+"} invited presentations),")
#out.append("\\textbf{"+str(len(talks['lectures']['data']))+"} lecture"+plural+" at PhD schools,")
#out.append("\\textbf{"+str(len(talks['outreach']['data']))+"} outreach talks.")
out.append("\end{tabular} }")
with open(filename,"w") as f: f.write("\n".join(out))
def convertjournal(j):
journalconversion={}
journalconversion['\prd']=["Physical Review D", "PRD"]
journalconversion['\prdrc']=["Physical Review D", "PRD"]
journalconversion['\prdl']=["Physical Review D", "PRD"]
journalconversion['\prx']=["Physical Review Letters","PRX"]
journalconversion['\prl']=["Physical Review Letters","PRL"]
journalconversion['\prr']=["Physical Review Research","PRR"]
journalconversion['\mnras']=["Monthly Notices of the Royal Astronomical Society","MNRAS"]
journalconversion['\mnrasl']=["Monthly Notices of the Royal Astronomical Society","MNRAS"]
journalconversion['\cqg']=["Classical and Quantum Gravity","CQG"]
journalconversion['\\aap']=["Astronomy & Astrophysics","A&A"]
journalconversion['\\apj']=["Astrophysical Journal","APJ"]
journalconversion['\\apjl']=["Astrophysical Journal","APJ"]
journalconversion['\\ajp']=["American Journal of Physics","AJP"]
journalconversion['\grg']=["General Relativity and Gravitation","GRG"]
journalconversion['\lrr']=["Living Reviews in Relativity","LRR"]
journalconversion['\\natastro']=["Nature Astronomy","NatAstro"]
journalconversion['Proceedings of the International Astronomical Union']=["IAU Proceedigs","IAU"]
journalconversion['Journal of Physics: Conference Series']=["Journal of Physics: Conference Series","JoPCS"]
journalconversion['Journal of Open Source Software']=["Journal of Open Source Software","JOSS"]
journalconversion['Astrophysics and Space Science Proceedings']=["Astrophysics and Space Science Proceedings","AaSSP"]
journalconversion['Caltech Undergraduate Research Journal']=["Caltech Undergraduate Research Journal","CURJ"]
journalconversion['Chapter in: Handbook of Gravitational Wave Astronomy, Springer, Singapore']=['Book contribution','book']
journalconversion["arXiv e-prints"]=["arXiv","arXiv"]
if j in journalconversion:
return journalconversion[j]
else:
return [j,j]
def citationspreadsheet(papers):
gc = gspread.service_account()
sh = gc.open("Citation count")
print('Write Google Spreadsheet: List')
spreaddata={}
spreaddata['first_author']=[]
spreaddata['ads_citations']=[]
spreaddata['inspire_citations']=[]
spreaddata['max_citations']=[]
spreaddata['title']=[]
spreaddata['journal']=[]
spreaddata['year']=[]
spreaddata['arxiv']=[]
for k in papers:
for p in papers[k]['data']:
spreaddata['first_author'].append(p['author'].split(",")[0].split(".")[-1].strip().replace("\`",""))
spreaddata['ads_citations'].append(p['ads_citations'])
spreaddata['inspire_citations'].append(p['inspire_citations'])
spreaddata['max_citations'].append(max(p['ads_citations'],p['inspire_citations']))
spreaddata['title'].append(p['title'])
if p['journal']:
spreaddata['journal'].append(p['journal'].split("(")[0].replace("in press","").rstrip(" 0123456789.,") )
elif p['arxiv']:
spreaddata['journal'].append('arXiv')
else:
spreaddata['journal'].append("")
if p['journal'] == "PhD thesis":
spreaddata['year'].append(2016)
elif p['journal'] and "(" in p['journal'] and ")" in p['journal']:
spreaddata['year'].append(p['journal'].split("(")[-1].split(")")[0])
elif p['arxiv']:
spreaddata['year'].append("20"+p['arxiv'].split(':')[1][:2])
else:
spreaddata['year'].append()
if p['arxiv']:
spreaddata['arxiv'].append(p['arxiv'].split(']')[0].split("[")[1])
else:
spreaddata['arxiv'].append("None")
tot = len(spreaddata['title'])
for x in spreaddata:
assert(len(spreaddata[x]) == tot)
ind = np.argsort(spreaddata['max_citations'])[::-1]
for x in spreaddata:
spreaddata[x]=np.array(spreaddata[x])[ind]
worksheet = sh.worksheet("List")
worksheet.update("A3",np.expand_dims(np.arange(tot)+1,1).tolist())
worksheet.update("C3",np.expand_dims(spreaddata['first_author'],1).tolist())
worksheet.update("D3",np.expand_dims(spreaddata['year'],1).tolist())
worksheet.update("E3",np.expand_dims(spreaddata['title'],1).tolist())
worksheet.update("F3",np.expand_dims(spreaddata['ads_citations'],1).tolist())
worksheet.update("G3",np.expand_dims(spreaddata['inspire_citations'],1).tolist())
worksheet.update("H3",np.expand_dims(spreaddata['max_citations'],1).tolist())
worksheet.update("F2",str(np.sum(spreaddata['ads_citations'])))
worksheet.update("G2",str(np.sum(spreaddata['inspire_citations'])))
worksheet.update("H2",str(np.sum(spreaddata['max_citations'])))
worksheet.update("I2",str(hindex(spreaddata['max_citations'])))
print('Write Google Spreadsheet: Year')
singleyear=np.array(list(set(spreaddata['year'])))
journalcount = np.array([np.sum(spreaddata['year']==s) for s in singleyear])
ind = np.argsort(singleyear)
singleyear=singleyear[ind]
journalcount=journalcount[ind]
worksheet = sh.worksheet("Years")
worksheet.update("A2",np.expand_dims(np.array(singleyear),1).tolist())
worksheet.update("B2",np.expand_dims(np.array(journalcount),1).tolist())
print('Write Google Spreadsheet: Journals')
shortpub = [convertjournal(j)[1] for j in spreaddata['journal']]
singlepub = np.array([convertjournal(j)[1] for j in list(set(shortpub))])
journalcount = np.array([np.sum(np.array([convertjournal(j)[1] for j in shortpub])==s) for s in singlepub])
ind = np.argsort(journalcount)[::-1]
singlepub=singlepub[ind]
journalcount=journalcount[ind]
longjournals=[]
for s in singlepub:
for j in list(set(spreaddata['journal'])):
if convertjournal(j)[1]==s:
longjournals.append(convertjournal(j)[0])
break
"""
longpub=[]
#shortpub=[]
for j in singlepub:
if j in journalconversion:
longpub.append(journalconversion[j][0])
shortpub.append(journalconversion[j][1])
else:
longpub.append(j)
shortpub.append(j)
"""
worksheet = sh.worksheet("Journals")
worksheet.update("A2",np.expand_dims(np.array(longjournals),1).tolist())
worksheet.update("B2",np.expand_dims(np.array(journalcount),1).tolist())
worksheet.update("D2",np.expand_dims(np.array(singlepub),1).tolist())
print('Write Google Spreadsheet: arXiv')
singlearxiv=np.array(list(set(spreaddata['arxiv'])))
# Remove empty
singlearxiv=singlearxiv[singlearxiv!=""]
journalcount = np.array([np.sum(spreaddata['arxiv']==s) for s in singlearxiv])
ind = np.argsort(journalcount)[::-1]
singlearxiv=singlearxiv[ind]
journalcount=journalcount[ind]
worksheet = sh.worksheet("arXiv")
worksheet.update("A2",np.expand_dims(np.array(singlearxiv),1).tolist())
worksheet.update("B2",np.expand_dims(np.array(journalcount),1).tolist())
def builddocs(short=False):
print("Update CV")
pdflatex("CV")
print("Update CV")
pdflatex("CV")
print("Update publist")
pdflatex("publist")
print("Update talklist")
pdflatex("talklist")
print("Update CVshort")
pdflatex("CVshort")
def buildbib():
print("Build bib file from ADS")
# with open('publist.bib', 'r') as f:
# publist = f.read()
stored = []
# for p in publist.split('@'):
# if "BibDesk" not in p:
# stored.append(p.split("{")[1].split(",")[0])
tot = len(np.concatenate([papers[k]['data'] for k in papers]))
with tqdm(total=tot) as pbar:
for k in papers:
for p in papers[k]['data']:
if p['ads_found'] and p['ads_found'] not in stored:
with urllib.request.urlopen("https://ui.adsabs.harvard.edu/abs/"+p['ads_found']+"/exportcitation") as f:
bib = f.read()
bib=bib.decode()
bib = "@"+list(filter(lambda x:'adsnote' in x, bib.split("@")))[0].split("</textarea>")[0]
bib=html.unescape(bib)
if "journal =" in bib:
j = bib.split("journal =")[1].split("}")[0].split("{")[1]
bib = bib.replace(j,convertjournal(j)[0])
with open('publist.bib', 'a') as f:
f.write(bib)
pbar.update(1)
def replacekeys():
print("Checking ADS keys")
with open('database.py', 'r') as f:
database = f.read()
with open('publist.bib', 'r') as f:
publist = f.read()
for k in (papers):
for p in (papers[k]['data']):
if p['ads'] != p['ads_found']:
print("\tReplace:", p['ads'],"-->", p['ads_found'])
# Update in database
database = database.replace(p['ads'],p['ads_found'])
# Remove from bib file
publist = "@".join([b for b in publist.split("@") if p['ads'] not in b])
with open('database.py', 'w') as f:
f.write(database)
with open('publist.bib', 'w') as f:
f.write(publist)
def parseshort():
print("Update CVshort")
with open('CV.tex', 'r') as f:
CV = f.read()
CVshort = "%".join(CV.split("%mark_CVshort")[::2])
with open('CVshort.tex', 'w') as f:
f.write(CVshort)
def publishgithub():
date = datetime.now().strftime("%Y-%m-%d-%H-%M")
print("Publish github release:", date)
shutil.copy2("CV.pdf", "RiccardoBuscicchio_fullCV.pdf")
shutil.copy2("CVshort.pdf", "RiccardoBuscicchio_shortCV.pdf")
shutil.copy2("publist.pdf", "RiccardoBuscicchio_publist.pdf")
shutil.copy2("publist.bib", "RiccardoBuscicchio_publist.bib")
shutil.copy2("talklist.pdf", "RiccardoBuscicchio_talklist.pdf")
# Create a github token, see:
# https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
# Make sure a GITHUB_TOKEN variable is part of the environment variables
gh_release_create("RiccardoBuscicchio/CV", date, publish=True, name=date, asset_pattern="RiccardoBuscicchio_*")
#####################################
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="My Script")
parser.add_argument("--connected", action="store_true", help="Set connected to True")
parser.add_argument("--testing", action="store_true", help="Set testing to True")
parser.add_argument("--compiling", action="store_true", help="Set compiling to True")
parser.add_argument("--token", type=str, help="ADS authentication token")
parser.add_argument("--short", action="store_true", help="Set short to true (build the short version of the CV)")
args = parser.parse_args()
if args.connected:
# Set testing=True to avoid API limit
papers = ads_citations(papers,testing=args.testing, token=args.token)
papers = inspire_citations(papers,testing=args.testing)
parsepapers(papers)
parsetalks(talks)
metricspapers(papers)
metricstalks(talks)
if args.short:
parseshort()
#buildbib()
#citationspreadsheet(papers)
#replacekeys()
if args.compiling:
builddocs()