-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path2.59-2.66 set.py
267 lines (212 loc) · 6.77 KB
/
2.59-2.66 set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from orderedPair import *
from symbolic import *
import sys
sys.setrecursionlimit(100000)
# set
def element_of_set(x, set):
if set is None:
return False
elif eql(x, car(set)):
return True
else:
return element_of_set(x, cdr(set))
def adjoin_set(x, set):
if element_of_set(x, set):
return set
else:
return cons(x, set)
def intersection_set(set1, set2):
if set1 is None or set2 is None:
return None
elif element_of_set(car(set1), set2):
return cons(car(set1), intersection_set(cdr(set1), set2))
else:
return intersection_set(cdr(set1), set2)
# 2.59
def union_set(set1, set2):
if set1 is None:
return set2
elif set2 is None:
return set1
elif not element_of_set(car(set1), set2):
return cons(car(set1), union_set(cdr(set1), set2))
else:
return union_set(cdr(set1), set2)
# 2.60
# element_of_set, intersection_set, union_set不变
def _adjoin__set(x, set):
return cons(x, set)
def _union_set(set1, set2):
return cons(set1, set2)
# 2.61
def element_of_set_order(x, set):
if set is None:
return False
elif x == car(set):
return True
elif x < car(set):
return False
else:
return element_of_set_order(x, cdr(set))
def adjoin_set_order(x, set):
if set is None:
return lister(x)
elif x < car(set):
return cons(x, set)
elif x == car(set):
return set
else:
return cons(car(set), adjoin_set_order(x, cdr(set)))
def intersection_set_order(set1, set2):
if set1 is None or set2 is None:
return None
else:
x = car(set1)
y = car(set2)
if x == y:
return cons(x, intersection_set_order(cdr(set1), cdr(set2)))
elif x < y:
return intersection_set_order(cdr(set1), set2)
elif x > y:
return intersection_set_order(set1, cdr(set2))
def union_set_order(s1, s2):
if s1 is None and s2 is None:
return lister(None)
elif s1 is None:
return s2
elif s2 is None:
return s1
else:
x = car(s1)
y = car(s2)
if x == y:
return cons(x, union_set_order(cdr(s1), cdr(s2)))
elif x < y:
return cons(x, union_set_order(cdr(s1), s2))
elif x > y:
return cons(y, union_set_order(s1, cdr(s2)))
# tree
def make_tree(entry, left, right):
return lister(entry, left, right)
def entry(tree):
return car(tree)
def left_branch(tree):
return car(cdr(tree))
def right_branch(tree):
return car(cdr(cdr(tree)))
def element_of_tree(x, tree):
if x == entry(tree):
return True
elif x < entry(tree):
return element_of_tree(x, left_branch(tree))
elif x > entry(tree):
return element_of_tree(x, right_branch(tree))
def adjoin_tree(x, tree):
if tree is None:
return make_tree(x, None, None)
elif x == entry(tree):
return tree
elif x < entry(tree):
return make_tree(entry(tree),
adjoin_tree(x, left_branch(tree)),
right_branch(tree))
elif x > entry(tree):
return make_tree(entry(tree),
left_branch(tree),
adjoin_tree(x, right_branch(tree)))
# 2.63
def tree_to_list1(tree):
if tree is None:
return None
else:
return append(tree_to_list1(left_branch(tree)),
cons(entry(tree),
tree_to_list1(right_branch(tree))))
def tree_to_list2(tree, result=None):
if tree is None:
return result
else:
return tree_to_list2(left_branch(tree),
cons(entry(tree),
tree_to_list2(right_branch(tree),
result)))
#2.64
def list_to_tree(elements):
return car(partial_tree(elements, length(elements)))
def partial_tree(elts, n):
# display(elts)
# print(n)
if not n:
return cons(None, elts)
else:
left_size = (n-1)//2
left_result = partial_tree(elts, left_size)
left_tree = car(left_result)
non_left_elts = cdr(left_result)
right_size = n - (left_size+1)
this_entry = car(non_left_elts)
right_result = partial_tree(cdr(non_left_elts), right_size)
right_tree = car(right_result)
remaining_elts = cdr(right_result)
return cons(make_tree(this_entry, left_tree, right_tree),
remaining_elts)
# 2.65
def union_set_tree(tree1, tree2):
return list_to_tree(
union_set_order(tree_to_list2(tree1),
tree_to_list2(tree2)))
def intersection_tree(tree1, tree2):
return list_to_tree(
intersection_set_order(tree_to_list2(tree1),
tree_to_list2(tree2)))
# 2.66
def lookup(key, tree):
if tree is None:
return False
elif key == entry(tree):
return key
elif key < entry(tree):
return element_of_tree(key, left_branch(tree))
elif key > entry(tree):
return element_of_tree(key, right_branch(tree))
if __name__ == '__main__':
s1 = lister(1, 2, 3, 4, 5)
s2 = lister(3, 4, 5, 6, 7)
s3 = lister(5, 6, 7, 8, 9)
ss = lister(1, 2, 3, 1, 4, 2, 4, 9, 7, 5, 3, 3, 2, 2, 4, 6)
display(element_of_set(4, s1))
display(adjoin_set(1, s2))
display(intersection_set(s1, s2))
display(union_set(s1, s2))
display(element_of_set_order(4, s1))
display(adjoin_set_order(1, s2))
display(intersection_set_order(s1, s2))
display(union_set_order(s1, s2))
tree1 = make_tree(7,
make_tree(3,
make_tree(1, None, None),
make_tree(5, None, None)),
make_tree(9,
None,
make_tree(11, None, None)))
tree2 = make_tree(3,
make_tree(1, None, None),
make_tree(7,
make_tree(5, None, None),
make_tree(9,
None,
make_tree(11, None, None))))
tree3 = make_tree(5,
make_tree(3,
make_tree(1, None, None),
None),
make_tree(9,
make_tree(7, None, None),
make_tree(11, None, None)))
display(tree_to_list1(tree1))
display(tree_to_list1(tree2))
display(tree_to_list1(tree3))
display(tree_to_list2(tree1))
display(tree_to_list2(tree2))
display(tree_to_list2(tree3))
display(list_to_tree(lister(1, 3, 5, 7, 9, 11)))