-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_face_eliminator.py
executable file
·76 lines (59 loc) · 2.16 KB
/
test_face_eliminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Testing face eliminator
"""
import numpy as np
import cv2
import matplotlib.pyplot as plt
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
import sys
sys.path.insert(0, dir_path+"/Modules")
import FaceEliminator
import utils
#Loading the image to be tested
test_image = cv2.imread('/home/aarav/Desktop/1.png')
def segment(src_img):
"""
### Segment skin areas from hand using a YCrCb mask.
This function returns a mask with white areas signifying skin and black areas otherwise.
Returns: mask
"""
import cv2
from numpy import array, uint8
blurred_img = cv2.GaussianBlur(src_img,(5,5),0)
blurred_img = cv2.medianBlur(blurred_img,5)
blurred_img = cv2.cvtColor(blurred_img, cv2.COLOR_BGR2YCrCb)
lower = array([0,137,100], uint8)
upper = array([255,200,150], uint8)
mask = cv2.inRange(blurred_img, lower, upper)
open_kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5))
close_kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (7,7))
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, open_kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
return mask
def a():
haar_cascade_face = cv2.CascadeClassifier('/home/aarav/Desktop/MajorProject/Models/haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)
mask1 = segment(test_image)
plt.imshow(mask1)
rects = haar_cascade_face.detectMultiScale(gray, scaleFactor = 1.2, minNeighbors = 5);
maxArea1 = 0
faceRect = -1
foundFace = False
for (x,y,w,h) in rects:
if w*h > maxArea1:
maxArea1 = w*h
faceRect = (x,y,w,h)
foundFace = True
for (x,y,w,h) in rects:
cv2.rectangle(test_image, (x, y), (x+w, y+h), (0, 255, 0), 2)
plt.imshow(convertToRGB(test_image))
mask1 = FaceEliminator.eliminateFace(mask1, foundFace, faceRect)
plt.imshow(mask1)
test_image = cv2.resize(test_image,(284,284))
mask1 = segment(test_image)
plt.imshow(mask1, cmap='gray')
handFound, hand, contours_of_hand = utils.get_my_hand(mask1)
plt.imshow(hand, cmap='gray')