-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtestimg.py
37 lines (33 loc) · 1.28 KB
/
testimg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from mmdet.apis import init_detector, inference_detector, show_result
import mmcv
import os
from glob import glob
from tqdm import tqdm
import re
import json
import numpy as np
config_file='/home/mic_dachuang/B/mmdetection/modified_configs/faster_rcnn_x101_64x4d_fpn_1x.py'
checkpoint_file='/home/mic_dachuang/B/mmdetection/work_dir_new_4_14/faster_adagrad/epoch_8.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')
clue='/home/mic_dachuang/B/mmdetection/data_new_4_14/test2017/'
plain='/home/mic_dachuang/B/test/plain'
threshold=0.6
def get_output(imgs):
result=[]
for j,img in enumerate(imgs):
fn=re.search(r'[-\w]*.jpg',img).group()
res=inference_detector(model,img)
bboxes=np.vstack(res)
print("Tested image ",j,'of',len(imgs),fn,len(bboxes))
if len(bboxes)>0:
res_bbox=[]
for i,bbox in enumerate(bboxes):
if float(bbox[4])>threshold:
res_bbox.append([round(float(x),2) for x in bbox])
result.append('filename':fn,'bboxes':res_bbox)
return result
with open('./clue.json','r') as cf:
json.dump(get_output(glob(clue+'*.jpg')),cf)
with open('./plain.json','r') as pf:
json.dump(get_output(glob(plain+'*.jpg')),pf)
print("Done.")