-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcls_proto.py
108 lines (96 loc) · 2.99 KB
/
cls_proto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
plain_config='/home/mic_dachuang/B/test/plain.json'
clue_config='/home/mic_dachuang/B/test/clue.json'
additional_info='confidence threshold=0.6'
import json
import pickle
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(12,8))
from sklearn import svm,naive_bayes,neighbors,tree
configs={
'svm': svm.SVC(),\
'decision_tree':tree.DecisionTreeClassifier(),
'naive_gaussian': naive_bayes.GaussianNB(), \
'naive_mn':naive_bayes.MultinomialNB(),\
'K_neighbor' : neighbors.KNeighborsClassifier(),
}
def load_data():
plain=[]
clue=[]
with open(plain_config,'r') as fp:
plain=json.load(fp)
with open(clue_config,'r') as fc:
clue=json.load(fc)
x=[]
y=[0]*len(plain)
bn=[]
cf=[]
sz=[]
for i in plain:
bbox_size=[]
confidence=[]
num_bboxes=len(i['bboxes'])
if num_bboxes>0:
for bbox in i['bboxes']:
bbox_size.append((int(bbox[2])-int(bbox[0]))*(int(bbox[3])-int(bbox[1])))
confidence.append(bbox[4])
avg_size=np.mean(bbox_size)
avg_conf=np.mean(confidence)
else:
avg_size=0
avg_conf=0
x.append([num_bboxes,avg_size,avg_conf])
bn.append(num_bboxes)
cf.append(avg_conf)
sz.append(avg_size)
print(bn,'\n',cf)
plt.scatter(sz,cf,marker='o',c='green',alpha=0.6,label='None Clue Cells')
y=y+[1]*len(clue)
bn=[]
cf=[]
sz=[]
for j in clue:
bbox_size=[]
confidence=[]
num_bboxes=len(j['bboxes'])
if num_bboxes>0:
for bbox in j['bboxes']:
bbox_size.append((bbox[2]-bbox[0])*(bbox[3]-bbox[1]))
confidence.append(bbox[4])
avg_size=np.mean(bbox_size)
avg_conf=np.mean(confidence)
else:
avg_size=0
avg_conf=0
x.append([num_bboxes,avg_size,avg_conf])
print(num_bboxes,avg_conf)
bn.append(num_bboxes)
cf.append(avg_conf)
sz.append(avg_size)
print(bn,'\n',cf)
plt.scatter(sz,cf,marker='o',c='red',alpha=0.5,label='Clue Cells')
plt.legend()
plt.savefig('./plt.png')
return x,y
def shuffule_uni(a,b):
assert len(a)==len(b)
shuffled_a = np.empty(a.shape, dtype=a.dtype)
shuffled_b = np.empty(b.shape, dtype=b.dtype)
permutation = np.random.permutation(len(a))
for old_index, new_index in enumerate(permutation):
shuffled_a[new_index] = a[old_index]
shuffled_b[new_index] = b[old_index]
return shuffled_a, shuffled_b
x_raw,y_raw=load_data()
x_array=np.array(x_raw);y_array=np.array(y_raw)
x,y=shuffule_uni(x_array,y_array)
x_train,x_test=x[:1000],x[1000:]
y_train,y_test=y[:1000].reshape(-1,1),y[1000:].reshape(-1,1)
def train_test(cfg):
cfg.fit(x_train,y_train.ravel())
score=cfg.score(x_test,y_test.ravel())
print("Score: ",score)
for cfg_key in configs.keys():
print("Method: ",cfg_key)
train_test(configs[cfg_key])