diff --git a/02_activities/assignments/assignment_1.ipynb b/02_activities/assignments/assignment_1.ipynb
index 28d4df017..91a8f3a3b 100644
--- a/02_activities/assignments/assignment_1.ipynb
+++ b/02_activities/assignments/assignment_1.ipynb
@@ -34,7 +34,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"id": "4a3485d6-ba58-4660-a983-5680821c5719",
"metadata": {},
"outputs": [],
@@ -56,10 +56,288 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"id": "a431d282-f9ca-4d5d-8912-71ffc9d8ea19",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " ash | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " total_phenols | \n",
+ " flavanoids | \n",
+ " nonflavanoid_phenols | \n",
+ " proanthocyanins | \n",
+ " color_intensity | \n",
+ " hue | \n",
+ " od280/od315_of_diluted_wines | \n",
+ " proline | \n",
+ " class | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127.0 | \n",
+ " 2.80 | \n",
+ " 3.06 | \n",
+ " 0.28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100.0 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113.0 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95.0 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.70 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102.0 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.30 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.20 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.30 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 177 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96.0 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.20 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
178 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n",
+ "0 14.23 1.71 2.43 15.6 127.0 2.80 \n",
+ "1 13.20 1.78 2.14 11.2 100.0 2.65 \n",
+ "2 13.16 2.36 2.67 18.6 101.0 2.80 \n",
+ "3 14.37 1.95 2.50 16.8 113.0 3.85 \n",
+ "4 13.24 2.59 2.87 21.0 118.0 2.80 \n",
+ ".. ... ... ... ... ... ... \n",
+ "173 13.71 5.65 2.45 20.5 95.0 1.68 \n",
+ "174 13.40 3.91 2.48 23.0 102.0 1.80 \n",
+ "175 13.27 4.28 2.26 20.0 120.0 1.59 \n",
+ "176 13.17 2.59 2.37 20.0 120.0 1.65 \n",
+ "177 14.13 4.10 2.74 24.5 96.0 2.05 \n",
+ "\n",
+ " flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n",
+ "0 3.06 0.28 2.29 5.64 1.04 \n",
+ "1 2.76 0.26 1.28 4.38 1.05 \n",
+ "2 3.24 0.30 2.81 5.68 1.03 \n",
+ "3 3.49 0.24 2.18 7.80 0.86 \n",
+ "4 2.69 0.39 1.82 4.32 1.04 \n",
+ ".. ... ... ... ... ... \n",
+ "173 0.61 0.52 1.06 7.70 0.64 \n",
+ "174 0.75 0.43 1.41 7.30 0.70 \n",
+ "175 0.69 0.43 1.35 10.20 0.59 \n",
+ "176 0.68 0.53 1.46 9.30 0.60 \n",
+ "177 0.76 0.56 1.35 9.20 0.61 \n",
+ "\n",
+ " od280/od315_of_diluted_wines proline class \n",
+ "0 3.92 1065.0 0 \n",
+ "1 3.40 1050.0 0 \n",
+ "2 3.17 1185.0 0 \n",
+ "3 3.45 1480.0 0 \n",
+ "4 2.93 735.0 0 \n",
+ ".. ... ... ... \n",
+ "173 1.74 740.0 2 \n",
+ "174 1.56 750.0 2 \n",
+ "175 1.56 835.0 2 \n",
+ "176 1.62 840.0 2 \n",
+ "177 1.60 560.0 2 \n",
+ "\n",
+ "[178 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from sklearn.datasets import load_wine\n",
"\n",
@@ -91,12 +369,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"id": "56916892",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "178"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your answer here"
+ "178"
]
},
{
@@ -109,12 +398,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"id": "df0ef103",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "14"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your answer here"
+ "14\n"
]
},
{
@@ -127,12 +427,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"id": "47989426",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0, 1, 2])"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your answer here"
+ " wine_df['class'].unique()\n",
+ "\n"
]
},
{
@@ -146,12 +458,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"id": "bd7b0910",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "13"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your answer here"
+ "13"
]
},
{
@@ -175,20 +498,306 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "id": "cc899b59",
+ "execution_count": 7,
+ "id": "f304cef6",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " ash | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " total_phenols | \n",
+ " flavanoids | \n",
+ " nonflavanoid_phenols | \n",
+ " proanthocyanins | \n",
+ " color_intensity | \n",
+ " hue | \n",
+ " od280/od315_of_diluted_wines | \n",
+ " proline | \n",
+ " class | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1.518613 | \n",
+ " -0.562250 | \n",
+ " 0.232053 | \n",
+ " -1.169593 | \n",
+ " 1.913905 | \n",
+ " 0.808997 | \n",
+ " 1.034819 | \n",
+ " -0.659563 | \n",
+ " 1.224884 | \n",
+ " 0.251717 | \n",
+ " 0.362177 | \n",
+ " 1.847920 | \n",
+ " 1.013009 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 0.246290 | \n",
+ " -0.499413 | \n",
+ " -0.827996 | \n",
+ " -2.490847 | \n",
+ " 0.018145 | \n",
+ " 0.568648 | \n",
+ " 0.733629 | \n",
+ " -0.820719 | \n",
+ " -0.544721 | \n",
+ " -0.293321 | \n",
+ " 0.406051 | \n",
+ " 1.113449 | \n",
+ " 0.965242 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 0.196879 | \n",
+ " 0.021231 | \n",
+ " 1.109334 | \n",
+ " -0.268738 | \n",
+ " 0.088358 | \n",
+ " 0.808997 | \n",
+ " 1.215533 | \n",
+ " -0.498407 | \n",
+ " 2.135968 | \n",
+ " 0.269020 | \n",
+ " 0.318304 | \n",
+ " 0.788587 | \n",
+ " 1.395148 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1.691550 | \n",
+ " -0.346811 | \n",
+ " 0.487926 | \n",
+ " -0.809251 | \n",
+ " 0.930918 | \n",
+ " 2.491446 | \n",
+ " 1.466525 | \n",
+ " -0.981875 | \n",
+ " 1.032155 | \n",
+ " 1.186068 | \n",
+ " -0.427544 | \n",
+ " 1.184071 | \n",
+ " 2.334574 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 0.295700 | \n",
+ " 0.227694 | \n",
+ " 1.840403 | \n",
+ " 0.451946 | \n",
+ " 1.281985 | \n",
+ " 0.808997 | \n",
+ " 0.663351 | \n",
+ " 0.226796 | \n",
+ " 0.401404 | \n",
+ " -0.319276 | \n",
+ " 0.362177 | \n",
+ " 0.449601 | \n",
+ " -0.037874 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 0.876275 | \n",
+ " 2.974543 | \n",
+ " 0.305159 | \n",
+ " 0.301803 | \n",
+ " -0.332922 | \n",
+ " -0.985614 | \n",
+ " -1.424900 | \n",
+ " 1.274310 | \n",
+ " -0.930179 | \n",
+ " 1.142811 | \n",
+ " -1.392758 | \n",
+ " -1.231206 | \n",
+ " -0.021952 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 0.493343 | \n",
+ " 1.412609 | \n",
+ " 0.414820 | \n",
+ " 1.052516 | \n",
+ " 0.158572 | \n",
+ " -0.793334 | \n",
+ " -1.284344 | \n",
+ " 0.549108 | \n",
+ " -0.316950 | \n",
+ " 0.969783 | \n",
+ " -1.129518 | \n",
+ " -1.485445 | \n",
+ " 0.009893 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 0.332758 | \n",
+ " 1.744744 | \n",
+ " -0.389355 | \n",
+ " 0.151661 | \n",
+ " 1.422412 | \n",
+ " -1.129824 | \n",
+ " -1.344582 | \n",
+ " 0.549108 | \n",
+ " -0.422075 | \n",
+ " 2.224236 | \n",
+ " -1.612125 | \n",
+ " -1.485445 | \n",
+ " 0.280575 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 0.209232 | \n",
+ " 0.227694 | \n",
+ " 0.012732 | \n",
+ " 0.151661 | \n",
+ " 1.422412 | \n",
+ " -1.033684 | \n",
+ " -1.354622 | \n",
+ " 1.354888 | \n",
+ " -0.229346 | \n",
+ " 1.834923 | \n",
+ " -1.568252 | \n",
+ " -1.400699 | \n",
+ " 0.296498 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 177 | \n",
+ " 1.395086 | \n",
+ " 1.583165 | \n",
+ " 1.365208 | \n",
+ " 1.502943 | \n",
+ " -0.262708 | \n",
+ " -0.392751 | \n",
+ " -1.274305 | \n",
+ " 1.596623 | \n",
+ " -0.422075 | \n",
+ " 1.791666 | \n",
+ " -1.524378 | \n",
+ " -1.428948 | \n",
+ " -0.595160 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
178 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid ash alcalinity_of_ash magnesium \\\n",
+ "0 1.518613 -0.562250 0.232053 -1.169593 1.913905 \n",
+ "1 0.246290 -0.499413 -0.827996 -2.490847 0.018145 \n",
+ "2 0.196879 0.021231 1.109334 -0.268738 0.088358 \n",
+ "3 1.691550 -0.346811 0.487926 -0.809251 0.930918 \n",
+ "4 0.295700 0.227694 1.840403 0.451946 1.281985 \n",
+ ".. ... ... ... ... ... \n",
+ "173 0.876275 2.974543 0.305159 0.301803 -0.332922 \n",
+ "174 0.493343 1.412609 0.414820 1.052516 0.158572 \n",
+ "175 0.332758 1.744744 -0.389355 0.151661 1.422412 \n",
+ "176 0.209232 0.227694 0.012732 0.151661 1.422412 \n",
+ "177 1.395086 1.583165 1.365208 1.502943 -0.262708 \n",
+ "\n",
+ " total_phenols flavanoids nonflavanoid_phenols proanthocyanins \\\n",
+ "0 0.808997 1.034819 -0.659563 1.224884 \n",
+ "1 0.568648 0.733629 -0.820719 -0.544721 \n",
+ "2 0.808997 1.215533 -0.498407 2.135968 \n",
+ "3 2.491446 1.466525 -0.981875 1.032155 \n",
+ "4 0.808997 0.663351 0.226796 0.401404 \n",
+ ".. ... ... ... ... \n",
+ "173 -0.985614 -1.424900 1.274310 -0.930179 \n",
+ "174 -0.793334 -1.284344 0.549108 -0.316950 \n",
+ "175 -1.129824 -1.344582 0.549108 -0.422075 \n",
+ "176 -1.033684 -1.354622 1.354888 -0.229346 \n",
+ "177 -0.392751 -1.274305 1.596623 -0.422075 \n",
+ "\n",
+ " color_intensity hue od280/od315_of_diluted_wines proline class \n",
+ "0 0.251717 0.362177 1.847920 1.013009 0 \n",
+ "1 -0.293321 0.406051 1.113449 0.965242 0 \n",
+ "2 0.269020 0.318304 0.788587 1.395148 0 \n",
+ "3 1.186068 -0.427544 1.184071 2.334574 0 \n",
+ "4 -0.319276 0.362177 0.449601 -0.037874 0 \n",
+ ".. ... ... ... ... ... \n",
+ "173 1.142811 -1.392758 -1.231206 -0.021952 2 \n",
+ "174 0.969783 -1.129518 -1.485445 0.009893 2 \n",
+ "175 2.224236 -1.612125 -1.485445 0.280575 2 \n",
+ "176 1.834923 -1.568252 -1.400699 0.296498 2 \n",
+ "177 1.791666 -1.524378 -1.428948 -0.595160 2 \n",
+ "\n",
+ "[178 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Select predictors (excluding the last column)\n",
- "predictors = wine_df.iloc[:, :-1]\n",
+ "predictors_standardized = wine_df.copy()\n",
+ "columns_to_exclude = ['class']\n",
"\n",
- "# Standardize the predictors\n",
+ "# Select the columns that we want to scale by excluding the 'id' and 'diagnosis' columns\n",
+ "# This will return a list of the numeric columns we need to scale\n",
+ "columns_to_scale = predictors_standardized.columns.difference(columns_to_exclude)\n",
+ "\n",
+ "# Initialize the StandardScaler to standardize the selected numeric columns\n",
"scaler = StandardScaler()\n",
- "predictors_standardized = pd.DataFrame(scaler.fit_transform(predictors), columns=predictors.columns)\n",
"\n",
- "# Display the head of the standardized predictors\n",
- "print(predictors_standardized.head())"
+ "# Apply the scaler to the selected columns. This transforms the data so that each feature\n",
+ "# has a mean of 0 and a standard deviation of 1, which is essential to prevent larger\n",
+ "# scale features from dominating the analysis, especially for distance-based algorithms like KNN.\n",
+ "predictors_standardized[columns_to_scale] = scaler.fit_transform(wine_df[columns_to_scale])\n",
+ "\n",
+ "# Output the standardized dataframe with the scaled numeric columns\n",
+ "predictors_standardized"
]
},
{
@@ -204,7 +813,7 @@
"id": "403ef0bb",
"metadata": {},
"source": [
- "> Your answer here..."
+ "Standardizing predictor variables allows models to treat each predictor fairly and making the coefficients easier to compare. Without standardization, predictors measured in large units can dominate the calculation and lead to unstable or less reliable model estimates. Standardizing also improves the numerical stability of the regression algorithm and is essential when using regularization methods like Ridge or Lasso, which penalize coefficients based on their size. "
]
},
{
@@ -220,7 +829,7 @@
"id": "fdee5a15",
"metadata": {},
"source": [
- "> Your answer here..."
+ "The 'class' variable in this case is a categorical variable, despite being a string. Standardization only makes sense for continous veriables where the differences and sitances have meaningful interpreations. In the case of categorical data, it represents groupings of the data opposed to specific numerical values. "
]
},
{
@@ -236,7 +845,7 @@
"id": "f0676c21",
"metadata": {},
"source": [
- "> Your answer here..."
+ "The specific seed value is not important, but rather setting the seed function, as it ensures that the data is randomly split between the training and testing data and ensures reproducibility in the data. "
]
},
{
@@ -251,7 +860,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"id": "72c101f2",
"metadata": {},
"outputs": [],
@@ -261,7 +870,10 @@
"\n",
"# split the data into a training and testing set. hint: use train_test_split !\n",
"\n",
- "# Your code here ..."
+ "wine_train, wine_test = train_test_split(\n",
+ " predictors_standardized, train_size=0.75, stratify=predictors_standardized[\"class\"]\n",
+ ")\n",
+ "\n"
]
},
{
@@ -284,12 +896,1496 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"id": "08818c64",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " mean_fit_time | \n",
+ " std_fit_time | \n",
+ " mean_score_time | \n",
+ " std_score_time | \n",
+ " param_n_neighbors | \n",
+ " params | \n",
+ " split0_test_score | \n",
+ " split1_test_score | \n",
+ " split2_test_score | \n",
+ " split3_test_score | \n",
+ " split4_test_score | \n",
+ " split5_test_score | \n",
+ " split6_test_score | \n",
+ " split7_test_score | \n",
+ " split8_test_score | \n",
+ " split9_test_score | \n",
+ " mean_test_score | \n",
+ " std_test_score | \n",
+ " rank_test_score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 0.005224 | \n",
+ " 0.011857 | \n",
+ " 0.004419 | \n",
+ " 0.008788 | \n",
+ " 1 | \n",
+ " {'n_neighbors': 1} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.692308 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954396 | \n",
+ " 0.092139 | \n",
+ " 39 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 0.000935 | \n",
+ " 0.000028 | \n",
+ " 0.001249 | \n",
+ " 0.000068 | \n",
+ " 2 | \n",
+ " {'n_neighbors': 2} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.692308 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.939011 | \n",
+ " 0.089628 | \n",
+ " 50 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 0.001057 | \n",
+ " 0.000247 | \n",
+ " 0.001277 | \n",
+ " 0.000061 | \n",
+ " 3 | \n",
+ " {'n_neighbors': 3} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.962088 | \n",
+ " 0.051217 | \n",
+ " 28 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 0.001061 | \n",
+ " 0.000187 | \n",
+ " 0.004589 | \n",
+ " 0.009698 | \n",
+ " 4 | \n",
+ " {'n_neighbors': 4} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.954945 | \n",
+ " 0.050406 | \n",
+ " 35 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 0.001042 | \n",
+ " 0.000106 | \n",
+ " 0.065221 | \n",
+ " 0.191469 | \n",
+ " 5 | \n",
+ " {'n_neighbors': 5} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.969780 | \n",
+ " 0.037042 | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 0.001389 | \n",
+ " 0.000854 | \n",
+ " 0.001617 | \n",
+ " 0.000422 | \n",
+ " 6 | \n",
+ " {'n_neighbors': 6} | \n",
+ " 0.928571 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.969780 | \n",
+ " 0.037042 | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 0.000990 | \n",
+ " 0.000061 | \n",
+ " 0.001286 | \n",
+ " 0.000058 | \n",
+ " 7 | \n",
+ " {'n_neighbors': 7} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.977473 | \n",
+ " 0.034441 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 0.000989 | \n",
+ " 0.000045 | \n",
+ " 0.001357 | \n",
+ " 0.000100 | \n",
+ " 8 | \n",
+ " {'n_neighbors': 8} | \n",
+ " 0.928571 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.954396 | \n",
+ " 0.050719 | \n",
+ " 39 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 0.000980 | \n",
+ " 0.000053 | \n",
+ " 0.001340 | \n",
+ " 0.000133 | \n",
+ " 9 | \n",
+ " {'n_neighbors': 9} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.969780 | \n",
+ " 0.037042 | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 0.000955 | \n",
+ " 0.000062 | \n",
+ " 0.001259 | \n",
+ " 0.000055 | \n",
+ " 10 | \n",
+ " {'n_neighbors': 10} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.954396 | \n",
+ " 0.050719 | \n",
+ " 39 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 0.000946 | \n",
+ " 0.000052 | \n",
+ " 0.001251 | \n",
+ " 0.000038 | \n",
+ " 11 | \n",
+ " {'n_neighbors': 11} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 0.000955 | \n",
+ " 0.000026 | \n",
+ " 0.001298 | \n",
+ " 0.000100 | \n",
+ " 12 | \n",
+ " {'n_neighbors': 12} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.969780 | \n",
+ " 0.037042 | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 0.000968 | \n",
+ " 0.000065 | \n",
+ " 0.001286 | \n",
+ " 0.000055 | \n",
+ " 13 | \n",
+ " {'n_neighbors': 13} | \n",
+ " 1.000000 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.977473 | \n",
+ " 0.034441 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 0.000925 | \n",
+ " 0.000013 | \n",
+ " 0.001242 | \n",
+ " 0.000036 | \n",
+ " 14 | \n",
+ " {'n_neighbors': 14} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 0.000928 | \n",
+ " 0.000016 | \n",
+ " 0.001248 | \n",
+ " 0.000033 | \n",
+ " 15 | \n",
+ " {'n_neighbors': 15} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 0.000961 | \n",
+ " 0.000048 | \n",
+ " 0.001285 | \n",
+ " 0.000048 | \n",
+ " 16 | \n",
+ " {'n_neighbors': 16} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 0.000958 | \n",
+ " 0.000057 | \n",
+ " 0.001273 | \n",
+ " 0.000034 | \n",
+ " 17 | \n",
+ " {'n_neighbors': 17} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 0.000952 | \n",
+ " 0.000039 | \n",
+ " 0.001301 | \n",
+ " 0.000047 | \n",
+ " 18 | \n",
+ " {'n_neighbors': 18} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 0.000949 | \n",
+ " 0.000035 | \n",
+ " 0.001289 | \n",
+ " 0.000072 | \n",
+ " 19 | \n",
+ " {'n_neighbors': 19} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 0.000928 | \n",
+ " 0.000011 | \n",
+ " 0.001271 | \n",
+ " 0.000035 | \n",
+ " 20 | \n",
+ " {'n_neighbors': 20} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.963187 | \n",
+ " 0.048777 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 0.000953 | \n",
+ " 0.000036 | \n",
+ " 0.001307 | \n",
+ " 0.000088 | \n",
+ " 21 | \n",
+ " {'n_neighbors': 21} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.970330 | \n",
+ " 0.036380 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 0.000949 | \n",
+ " 0.000030 | \n",
+ " 0.001272 | \n",
+ " 0.000024 | \n",
+ " 22 | \n",
+ " {'n_neighbors': 22} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.970330 | \n",
+ " 0.036380 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 0.000986 | \n",
+ " 0.000082 | \n",
+ " 0.001289 | \n",
+ " 0.000047 | \n",
+ " 23 | \n",
+ " {'n_neighbors': 23} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 0.000939 | \n",
+ " 0.000012 | \n",
+ " 0.001285 | \n",
+ " 0.000032 | \n",
+ " 24 | \n",
+ " {'n_neighbors': 24} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.970330 | \n",
+ " 0.036380 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 0.000949 | \n",
+ " 0.000034 | \n",
+ " 0.001290 | \n",
+ " 0.000041 | \n",
+ " 25 | \n",
+ " {'n_neighbors': 25} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954945 | \n",
+ " 0.050406 | \n",
+ " 33 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 0.000933 | \n",
+ " 0.000019 | \n",
+ " 0.001281 | \n",
+ " 0.000029 | \n",
+ " 26 | \n",
+ " {'n_neighbors': 26} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.050823 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 0.000948 | \n",
+ " 0.000032 | \n",
+ " 0.001322 | \n",
+ " 0.000075 | \n",
+ " 27 | \n",
+ " {'n_neighbors': 27} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954945 | \n",
+ " 0.050406 | \n",
+ " 33 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 0.000928 | \n",
+ " 0.000012 | \n",
+ " 0.001278 | \n",
+ " 0.000043 | \n",
+ " 28 | \n",
+ " {'n_neighbors': 28} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 0.000939 | \n",
+ " 0.000017 | \n",
+ " 0.001290 | \n",
+ " 0.000046 | \n",
+ " 29 | \n",
+ " {'n_neighbors': 29} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 0.000957 | \n",
+ " 0.000036 | \n",
+ " 0.001320 | \n",
+ " 0.000063 | \n",
+ " 30 | \n",
+ " {'n_neighbors': 30} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.947802 | \n",
+ " 0.046832 | \n",
+ " 42 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 0.000965 | \n",
+ " 0.000074 | \n",
+ " 0.001310 | \n",
+ " 0.000049 | \n",
+ " 31 | \n",
+ " {'n_neighbors': 31} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.955495 | \n",
+ " 0.048430 | \n",
+ " 29 | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 0.000927 | \n",
+ " 0.000007 | \n",
+ " 0.001263 | \n",
+ " 0.000013 | \n",
+ " 32 | \n",
+ " {'n_neighbors': 32} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.955495 | \n",
+ " 0.048430 | \n",
+ " 29 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 0.000924 | \n",
+ " 0.000018 | \n",
+ " 0.001283 | \n",
+ " 0.000030 | \n",
+ " 33 | \n",
+ " {'n_neighbors': 33} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.955495 | \n",
+ " 0.048430 | \n",
+ " 29 | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 0.000947 | \n",
+ " 0.000043 | \n",
+ " 0.001361 | \n",
+ " 0.000124 | \n",
+ " 34 | \n",
+ " {'n_neighbors': 34} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.963187 | \n",
+ " 0.048777 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 0.000929 | \n",
+ " 0.000005 | \n",
+ " 0.001264 | \n",
+ " 0.000010 | \n",
+ " 35 | \n",
+ " {'n_neighbors': 35} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.955495 | \n",
+ " 0.048430 | \n",
+ " 29 | \n",
+ "
\n",
+ " \n",
+ " | 35 | \n",
+ " 0.000961 | \n",
+ " 0.000031 | \n",
+ " 0.001339 | \n",
+ " 0.000052 | \n",
+ " 36 | \n",
+ " {'n_neighbors': 36} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 0.000980 | \n",
+ " 0.000140 | \n",
+ " 0.001291 | \n",
+ " 0.000027 | \n",
+ " 37 | \n",
+ " {'n_neighbors': 37} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 37 | \n",
+ " 0.000963 | \n",
+ " 0.000064 | \n",
+ " 0.001307 | \n",
+ " 0.000044 | \n",
+ " 38 | \n",
+ " {'n_neighbors': 38} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 38 | \n",
+ " 0.000953 | \n",
+ " 0.000053 | \n",
+ " 0.001313 | \n",
+ " 0.000039 | \n",
+ " 39 | \n",
+ " {'n_neighbors': 39} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.962637 | \n",
+ " 0.037411 | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 0.000933 | \n",
+ " 0.000011 | \n",
+ " 0.001312 | \n",
+ " 0.000047 | \n",
+ " 40 | \n",
+ " {'n_neighbors': 40} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954945 | \n",
+ " 0.036842 | \n",
+ " 35 | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 0.000951 | \n",
+ " 0.000034 | \n",
+ " 0.001359 | \n",
+ " 0.000145 | \n",
+ " 41 | \n",
+ " {'n_neighbors': 41} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.970330 | \n",
+ " 0.036380 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 41 | \n",
+ " 0.000932 | \n",
+ " 0.000019 | \n",
+ " 0.001297 | \n",
+ " 0.000029 | \n",
+ " 42 | \n",
+ " {'n_neighbors': 42} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954945 | \n",
+ " 0.036842 | \n",
+ " 35 | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 0.000951 | \n",
+ " 0.000048 | \n",
+ " 0.001315 | \n",
+ " 0.000038 | \n",
+ " 43 | \n",
+ " {'n_neighbors': 43} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.954945 | \n",
+ " 0.036842 | \n",
+ " 35 | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 0.000938 | \n",
+ " 0.000012 | \n",
+ " 0.001317 | \n",
+ " 0.000051 | \n",
+ " 44 | \n",
+ " {'n_neighbors': 44} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.048787 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 0.000967 | \n",
+ " 0.000052 | \n",
+ " 0.001344 | \n",
+ " 0.000050 | \n",
+ " 45 | \n",
+ " {'n_neighbors': 45} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.048787 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 45 | \n",
+ " 0.000949 | \n",
+ " 0.000049 | \n",
+ " 0.001295 | \n",
+ " 0.000013 | \n",
+ " 46 | \n",
+ " {'n_neighbors': 46} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.846154 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.048787 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 0.000962 | \n",
+ " 0.000050 | \n",
+ " 0.001330 | \n",
+ " 0.000042 | \n",
+ " 47 | \n",
+ " {'n_neighbors': 47} | \n",
+ " 0.857143 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.947802 | \n",
+ " 0.046832 | \n",
+ " 42 | \n",
+ "
\n",
+ " \n",
+ " | 47 | \n",
+ " 0.000936 | \n",
+ " 0.000012 | \n",
+ " 0.001297 | \n",
+ " 0.000018 | \n",
+ " 48 | \n",
+ " {'n_neighbors': 48} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.034594 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 0.000946 | \n",
+ " 0.000010 | \n",
+ " 0.001327 | \n",
+ " 0.000045 | \n",
+ " 49 | \n",
+ " {'n_neighbors': 49} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.034594 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 49 | \n",
+ " 0.000932 | \n",
+ " 0.000011 | \n",
+ " 0.001293 | \n",
+ " 0.000015 | \n",
+ " 50 | \n",
+ " {'n_neighbors': 50} | \n",
+ " 0.928571 | \n",
+ " 0.928571 | \n",
+ " 1.0 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 1.0 | \n",
+ " 1.000000 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.923077 | \n",
+ " 0.947253 | \n",
+ " 0.034594 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mean_fit_time std_fit_time mean_score_time std_score_time \\\n",
+ "0 0.005224 0.011857 0.004419 0.008788 \n",
+ "1 0.000935 0.000028 0.001249 0.000068 \n",
+ "2 0.001057 0.000247 0.001277 0.000061 \n",
+ "3 0.001061 0.000187 0.004589 0.009698 \n",
+ "4 0.001042 0.000106 0.065221 0.191469 \n",
+ "5 0.001389 0.000854 0.001617 0.000422 \n",
+ "6 0.000990 0.000061 0.001286 0.000058 \n",
+ "7 0.000989 0.000045 0.001357 0.000100 \n",
+ "8 0.000980 0.000053 0.001340 0.000133 \n",
+ "9 0.000955 0.000062 0.001259 0.000055 \n",
+ "10 0.000946 0.000052 0.001251 0.000038 \n",
+ "11 0.000955 0.000026 0.001298 0.000100 \n",
+ "12 0.000968 0.000065 0.001286 0.000055 \n",
+ "13 0.000925 0.000013 0.001242 0.000036 \n",
+ "14 0.000928 0.000016 0.001248 0.000033 \n",
+ "15 0.000961 0.000048 0.001285 0.000048 \n",
+ "16 0.000958 0.000057 0.001273 0.000034 \n",
+ "17 0.000952 0.000039 0.001301 0.000047 \n",
+ "18 0.000949 0.000035 0.001289 0.000072 \n",
+ "19 0.000928 0.000011 0.001271 0.000035 \n",
+ "20 0.000953 0.000036 0.001307 0.000088 \n",
+ "21 0.000949 0.000030 0.001272 0.000024 \n",
+ "22 0.000986 0.000082 0.001289 0.000047 \n",
+ "23 0.000939 0.000012 0.001285 0.000032 \n",
+ "24 0.000949 0.000034 0.001290 0.000041 \n",
+ "25 0.000933 0.000019 0.001281 0.000029 \n",
+ "26 0.000948 0.000032 0.001322 0.000075 \n",
+ "27 0.000928 0.000012 0.001278 0.000043 \n",
+ "28 0.000939 0.000017 0.001290 0.000046 \n",
+ "29 0.000957 0.000036 0.001320 0.000063 \n",
+ "30 0.000965 0.000074 0.001310 0.000049 \n",
+ "31 0.000927 0.000007 0.001263 0.000013 \n",
+ "32 0.000924 0.000018 0.001283 0.000030 \n",
+ "33 0.000947 0.000043 0.001361 0.000124 \n",
+ "34 0.000929 0.000005 0.001264 0.000010 \n",
+ "35 0.000961 0.000031 0.001339 0.000052 \n",
+ "36 0.000980 0.000140 0.001291 0.000027 \n",
+ "37 0.000963 0.000064 0.001307 0.000044 \n",
+ "38 0.000953 0.000053 0.001313 0.000039 \n",
+ "39 0.000933 0.000011 0.001312 0.000047 \n",
+ "40 0.000951 0.000034 0.001359 0.000145 \n",
+ "41 0.000932 0.000019 0.001297 0.000029 \n",
+ "42 0.000951 0.000048 0.001315 0.000038 \n",
+ "43 0.000938 0.000012 0.001317 0.000051 \n",
+ "44 0.000967 0.000052 0.001344 0.000050 \n",
+ "45 0.000949 0.000049 0.001295 0.000013 \n",
+ "46 0.000962 0.000050 0.001330 0.000042 \n",
+ "47 0.000936 0.000012 0.001297 0.000018 \n",
+ "48 0.000946 0.000010 0.001327 0.000045 \n",
+ "49 0.000932 0.000011 0.001293 0.000015 \n",
+ "\n",
+ " param_n_neighbors params split0_test_score \\\n",
+ "0 1 {'n_neighbors': 1} 1.000000 \n",
+ "1 2 {'n_neighbors': 2} 1.000000 \n",
+ "2 3 {'n_neighbors': 3} 1.000000 \n",
+ "3 4 {'n_neighbors': 4} 0.928571 \n",
+ "4 5 {'n_neighbors': 5} 1.000000 \n",
+ "5 6 {'n_neighbors': 6} 0.928571 \n",
+ "6 7 {'n_neighbors': 7} 1.000000 \n",
+ "7 8 {'n_neighbors': 8} 0.928571 \n",
+ "8 9 {'n_neighbors': 9} 1.000000 \n",
+ "9 10 {'n_neighbors': 10} 1.000000 \n",
+ "10 11 {'n_neighbors': 11} 0.928571 \n",
+ "11 12 {'n_neighbors': 12} 1.000000 \n",
+ "12 13 {'n_neighbors': 13} 1.000000 \n",
+ "13 14 {'n_neighbors': 14} 0.928571 \n",
+ "14 15 {'n_neighbors': 15} 0.928571 \n",
+ "15 16 {'n_neighbors': 16} 0.928571 \n",
+ "16 17 {'n_neighbors': 17} 0.928571 \n",
+ "17 18 {'n_neighbors': 18} 0.928571 \n",
+ "18 19 {'n_neighbors': 19} 0.928571 \n",
+ "19 20 {'n_neighbors': 20} 0.857143 \n",
+ "20 21 {'n_neighbors': 21} 0.928571 \n",
+ "21 22 {'n_neighbors': 22} 0.928571 \n",
+ "22 23 {'n_neighbors': 23} 0.928571 \n",
+ "23 24 {'n_neighbors': 24} 0.928571 \n",
+ "24 25 {'n_neighbors': 25} 0.928571 \n",
+ "25 26 {'n_neighbors': 26} 0.928571 \n",
+ "26 27 {'n_neighbors': 27} 0.928571 \n",
+ "27 28 {'n_neighbors': 28} 0.928571 \n",
+ "28 29 {'n_neighbors': 29} 0.928571 \n",
+ "29 30 {'n_neighbors': 30} 0.857143 \n",
+ "30 31 {'n_neighbors': 31} 0.857143 \n",
+ "31 32 {'n_neighbors': 32} 0.857143 \n",
+ "32 33 {'n_neighbors': 33} 0.857143 \n",
+ "33 34 {'n_neighbors': 34} 0.857143 \n",
+ "34 35 {'n_neighbors': 35} 0.857143 \n",
+ "35 36 {'n_neighbors': 36} 0.928571 \n",
+ "36 37 {'n_neighbors': 37} 0.928571 \n",
+ "37 38 {'n_neighbors': 38} 0.928571 \n",
+ "38 39 {'n_neighbors': 39} 0.928571 \n",
+ "39 40 {'n_neighbors': 40} 0.928571 \n",
+ "40 41 {'n_neighbors': 41} 0.928571 \n",
+ "41 42 {'n_neighbors': 42} 0.928571 \n",
+ "42 43 {'n_neighbors': 43} 0.928571 \n",
+ "43 44 {'n_neighbors': 44} 0.928571 \n",
+ "44 45 {'n_neighbors': 45} 0.928571 \n",
+ "45 46 {'n_neighbors': 46} 0.928571 \n",
+ "46 47 {'n_neighbors': 47} 0.857143 \n",
+ "47 48 {'n_neighbors': 48} 0.928571 \n",
+ "48 49 {'n_neighbors': 49} 0.928571 \n",
+ "49 50 {'n_neighbors': 50} 0.928571 \n",
+ "\n",
+ " split1_test_score split2_test_score split3_test_score \\\n",
+ "0 0.928571 1.0 0.692308 \n",
+ "1 0.928571 1.0 0.692308 \n",
+ "2 0.928571 1.0 0.846154 \n",
+ "3 0.928571 1.0 0.846154 \n",
+ "4 0.928571 1.0 0.923077 \n",
+ "5 1.000000 1.0 0.923077 \n",
+ "6 0.928571 1.0 0.923077 \n",
+ "7 1.000000 1.0 0.846154 \n",
+ "8 0.928571 1.0 0.923077 \n",
+ "9 0.928571 1.0 0.846154 \n",
+ "10 0.928571 1.0 0.923077 \n",
+ "11 0.928571 1.0 0.923077 \n",
+ "12 0.928571 1.0 1.000000 \n",
+ "13 0.928571 1.0 0.923077 \n",
+ "14 0.928571 1.0 0.923077 \n",
+ "15 0.928571 1.0 0.923077 \n",
+ "16 0.928571 1.0 0.923077 \n",
+ "17 0.928571 1.0 0.923077 \n",
+ "18 0.928571 1.0 0.923077 \n",
+ "19 0.928571 1.0 0.923077 \n",
+ "20 0.928571 1.0 0.923077 \n",
+ "21 0.928571 1.0 0.923077 \n",
+ "22 0.928571 1.0 0.923077 \n",
+ "23 0.928571 1.0 0.923077 \n",
+ "24 0.928571 1.0 0.846154 \n",
+ "25 0.928571 1.0 0.846154 \n",
+ "26 0.928571 1.0 0.846154 \n",
+ "27 0.928571 1.0 0.923077 \n",
+ "28 0.928571 1.0 0.923077 \n",
+ "29 0.928571 1.0 0.923077 \n",
+ "30 0.928571 1.0 0.923077 \n",
+ "31 0.928571 1.0 0.923077 \n",
+ "32 0.928571 1.0 0.923077 \n",
+ "33 0.928571 1.0 0.923077 \n",
+ "34 0.928571 1.0 0.923077 \n",
+ "35 0.928571 1.0 0.923077 \n",
+ "36 0.928571 1.0 0.923077 \n",
+ "37 0.928571 1.0 0.923077 \n",
+ "38 0.928571 1.0 0.923077 \n",
+ "39 0.928571 1.0 0.923077 \n",
+ "40 0.928571 1.0 1.000000 \n",
+ "41 0.928571 1.0 0.923077 \n",
+ "42 0.928571 1.0 0.923077 \n",
+ "43 0.928571 1.0 0.846154 \n",
+ "44 0.928571 1.0 0.846154 \n",
+ "45 0.928571 1.0 0.846154 \n",
+ "46 0.928571 1.0 0.923077 \n",
+ "47 0.928571 1.0 0.923077 \n",
+ "48 0.928571 1.0 0.923077 \n",
+ "49 0.928571 1.0 0.923077 \n",
+ "\n",
+ " split4_test_score split5_test_score split6_test_score \\\n",
+ "0 1.000000 1.0 1.000000 \n",
+ "1 1.000000 1.0 1.000000 \n",
+ "2 1.000000 1.0 1.000000 \n",
+ "3 0.923077 1.0 1.000000 \n",
+ "4 0.923077 1.0 1.000000 \n",
+ "5 0.923077 1.0 1.000000 \n",
+ "6 0.923077 1.0 1.000000 \n",
+ "7 0.923077 1.0 1.000000 \n",
+ "8 0.923077 1.0 1.000000 \n",
+ "9 0.923077 1.0 0.923077 \n",
+ "10 0.923077 1.0 1.000000 \n",
+ "11 0.923077 1.0 1.000000 \n",
+ "12 0.923077 1.0 1.000000 \n",
+ "13 0.923077 1.0 1.000000 \n",
+ "14 0.923077 1.0 1.000000 \n",
+ "15 0.923077 1.0 1.000000 \n",
+ "16 0.923077 1.0 1.000000 \n",
+ "17 0.923077 1.0 1.000000 \n",
+ "18 0.923077 1.0 1.000000 \n",
+ "19 0.923077 1.0 1.000000 \n",
+ "20 0.923077 1.0 1.000000 \n",
+ "21 0.923077 1.0 1.000000 \n",
+ "22 0.923077 1.0 1.000000 \n",
+ "23 0.923077 1.0 1.000000 \n",
+ "24 0.923077 1.0 1.000000 \n",
+ "25 0.923077 1.0 1.000000 \n",
+ "26 0.923077 1.0 1.000000 \n",
+ "27 0.923077 1.0 1.000000 \n",
+ "28 0.923077 1.0 1.000000 \n",
+ "29 0.923077 1.0 1.000000 \n",
+ "30 0.923077 1.0 1.000000 \n",
+ "31 0.923077 1.0 1.000000 \n",
+ "32 0.923077 1.0 1.000000 \n",
+ "33 0.923077 1.0 1.000000 \n",
+ "34 0.923077 1.0 0.923077 \n",
+ "35 0.923077 1.0 1.000000 \n",
+ "36 0.923077 1.0 1.000000 \n",
+ "37 0.923077 1.0 1.000000 \n",
+ "38 0.923077 1.0 1.000000 \n",
+ "39 0.923077 1.0 1.000000 \n",
+ "40 0.923077 1.0 1.000000 \n",
+ "41 0.923077 1.0 1.000000 \n",
+ "42 0.923077 1.0 1.000000 \n",
+ "43 0.923077 1.0 1.000000 \n",
+ "44 0.923077 1.0 1.000000 \n",
+ "45 0.923077 1.0 1.000000 \n",
+ "46 0.923077 1.0 1.000000 \n",
+ "47 0.923077 1.0 1.000000 \n",
+ "48 0.923077 1.0 1.000000 \n",
+ "49 0.923077 1.0 1.000000 \n",
+ "\n",
+ " split7_test_score split8_test_score split9_test_score mean_test_score \\\n",
+ "0 1.000000 1.000000 0.923077 0.954396 \n",
+ "1 0.923077 0.923077 0.923077 0.939011 \n",
+ "2 1.000000 0.923077 0.923077 0.962088 \n",
+ "3 1.000000 0.923077 1.000000 0.954945 \n",
+ "4 1.000000 0.923077 1.000000 0.969780 \n",
+ "5 1.000000 0.923077 1.000000 0.969780 \n",
+ "6 1.000000 1.000000 1.000000 0.977473 \n",
+ "7 0.923077 0.923077 1.000000 0.954396 \n",
+ "8 0.923077 1.000000 1.000000 0.969780 \n",
+ "9 0.923077 1.000000 1.000000 0.954396 \n",
+ "10 0.923077 1.000000 1.000000 0.962637 \n",
+ "11 0.923077 1.000000 1.000000 0.969780 \n",
+ "12 0.923077 1.000000 1.000000 0.977473 \n",
+ "13 0.923077 1.000000 1.000000 0.962637 \n",
+ "14 0.923077 1.000000 1.000000 0.962637 \n",
+ "15 0.923077 1.000000 1.000000 0.962637 \n",
+ "16 0.923077 1.000000 1.000000 0.962637 \n",
+ "17 0.923077 1.000000 1.000000 0.962637 \n",
+ "18 0.923077 1.000000 1.000000 0.962637 \n",
+ "19 1.000000 1.000000 1.000000 0.963187 \n",
+ "20 1.000000 1.000000 1.000000 0.970330 \n",
+ "21 1.000000 1.000000 1.000000 0.970330 \n",
+ "22 1.000000 1.000000 0.923077 0.962637 \n",
+ "23 1.000000 1.000000 1.000000 0.970330 \n",
+ "24 1.000000 1.000000 0.923077 0.954945 \n",
+ "25 1.000000 1.000000 1.000000 0.962637 \n",
+ "26 1.000000 1.000000 0.923077 0.954945 \n",
+ "27 1.000000 1.000000 0.923077 0.962637 \n",
+ "28 1.000000 1.000000 0.923077 0.962637 \n",
+ "29 0.923077 1.000000 0.923077 0.947802 \n",
+ "30 1.000000 1.000000 0.923077 0.955495 \n",
+ "31 1.000000 1.000000 0.923077 0.955495 \n",
+ "32 1.000000 1.000000 0.923077 0.955495 \n",
+ "33 1.000000 1.000000 1.000000 0.963187 \n",
+ "34 1.000000 1.000000 1.000000 0.955495 \n",
+ "35 0.923077 1.000000 1.000000 0.962637 \n",
+ "36 0.923077 1.000000 1.000000 0.962637 \n",
+ "37 0.923077 1.000000 1.000000 0.962637 \n",
+ "38 0.923077 1.000000 1.000000 0.962637 \n",
+ "39 0.923077 1.000000 0.923077 0.954945 \n",
+ "40 0.923077 1.000000 1.000000 0.970330 \n",
+ "41 0.923077 1.000000 0.923077 0.954945 \n",
+ "42 0.923077 1.000000 0.923077 0.954945 \n",
+ "43 0.923077 1.000000 0.923077 0.947253 \n",
+ "44 0.923077 1.000000 0.923077 0.947253 \n",
+ "45 0.923077 1.000000 0.923077 0.947253 \n",
+ "46 0.923077 1.000000 0.923077 0.947802 \n",
+ "47 0.923077 0.923077 0.923077 0.947253 \n",
+ "48 0.923077 0.923077 0.923077 0.947253 \n",
+ "49 0.923077 0.923077 0.923077 0.947253 \n",
+ "\n",
+ " std_test_score rank_test_score \n",
+ "0 0.092139 39 \n",
+ "1 0.089628 50 \n",
+ "2 0.051217 28 \n",
+ "3 0.050406 35 \n",
+ "4 0.037042 7 \n",
+ "5 0.037042 7 \n",
+ "6 0.034441 1 \n",
+ "7 0.050719 39 \n",
+ "8 0.037042 9 \n",
+ "9 0.050719 39 \n",
+ "10 0.037411 17 \n",
+ "11 0.037042 9 \n",
+ "12 0.034441 1 \n",
+ "13 0.037411 17 \n",
+ "14 0.037411 17 \n",
+ "15 0.037411 17 \n",
+ "16 0.037411 17 \n",
+ "17 0.037411 17 \n",
+ "18 0.037411 17 \n",
+ "19 0.048777 11 \n",
+ "20 0.036380 3 \n",
+ "21 0.036380 3 \n",
+ "22 0.037411 13 \n",
+ "23 0.036380 3 \n",
+ "24 0.050406 33 \n",
+ "25 0.050823 13 \n",
+ "26 0.050406 33 \n",
+ "27 0.037411 13 \n",
+ "28 0.037411 13 \n",
+ "29 0.046832 42 \n",
+ "30 0.048430 29 \n",
+ "31 0.048430 29 \n",
+ "32 0.048430 29 \n",
+ "33 0.048777 11 \n",
+ "34 0.048430 29 \n",
+ "35 0.037411 17 \n",
+ "36 0.037411 17 \n",
+ "37 0.037411 17 \n",
+ "38 0.037411 17 \n",
+ "39 0.036842 35 \n",
+ "40 0.036380 3 \n",
+ "41 0.036842 35 \n",
+ "42 0.036842 35 \n",
+ "43 0.048787 44 \n",
+ "44 0.048787 44 \n",
+ "45 0.048787 44 \n",
+ "46 0.046832 42 \n",
+ "47 0.034594 44 \n",
+ "48 0.034594 44 \n",
+ "49 0.034594 44 "
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your code here..."
+ "knn = KNeighborsClassifier()\n",
+ "\n",
+ "parameter_grid = {\n",
+ " \"n_neighbors\": range(1,51)\n",
+ "}\n",
+ "\n",
+ "wine_tune_grid = GridSearchCV(\n",
+ " estimator=knn,\n",
+ " param_grid=parameter_grid,\n",
+ " cv=10\n",
+ ")\n",
+ "\n",
+ "X_train = wine_train.iloc[:, :-1] # all columns except last\n",
+ "y_train = wine_train['class'] \n",
+ "\n",
+ "wine_tune_grid.fit(X_train, y_train)\n",
+ "\n",
+ "accuracy_grid = pd.DataFrame(wine_tune_grid.cv_results_)\n",
+ "accuracy_grid\n"
]
},
{
@@ -305,12 +2401,47 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
"id": "ffefa9f2",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.9411764705882353"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your code here..."
+ "kvalue = wine_tune_grid.best_params_[\"n_neighbors\"]\n",
+ "\n",
+ "wine_subtrain, wine_validation = train_test_split(\n",
+ " wine_train,\n",
+ " train_size=0.75,\n",
+ " stratify=wine_train['class']\n",
+ ")\n",
+ "\n",
+ "X_sub = wine_subtrain.iloc[:, :-1]\n",
+ "y_sub = wine_subtrain['class']\n",
+ "\n",
+ "X_val = wine_validation.iloc[:, :-1]\n",
+ "y_val = wine_validation['class']\n",
+ "\n",
+ "# 3. Fit final KNN using best k\n",
+ "final_knn = KNeighborsClassifier(n_neighbors=kvalue)\n",
+ "final_knn.fit(X_sub, y_sub)\n",
+ "\n",
+ "# 4. Predict on validation set\n",
+ "val_predictions = final_knn.predict(X_val)\n",
+ "\n",
+ "# 5. Accuracy on validation set\n",
+ "val_accuracy = accuracy_score(y_val, val_predictions)\n",
+ "val_accuracy\n",
+ "\n"
]
},
{
@@ -365,7 +2496,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3.10.4",
+ "display_name": "lcr-env",
"language": "python",
"name": "python3"
},
@@ -379,12 +2510,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.19"
- },
- "vscode": {
- "interpreter": {
- "hash": "497a84dc8fec8cf8d24e7e87b6d954c9a18a327edc66feb9b9ea7e9e72cc5c7e"
- }
+ "version": "3.11.1"
}
},
"nbformat": 4,
diff --git a/02_activities/assignments/assignment_2.ipynb b/02_activities/assignments/assignment_2.ipynb
index a05da5cd3..6d35e44f5 100644
--- a/02_activities/assignments/assignment_2.ipynb
+++ b/02_activities/assignments/assignment_2.ipynb
@@ -34,10 +34,21 @@
},
{
"cell_type": "code",
- "execution_count": 63,
+ "execution_count": null,
"id": "4a3485d6-ba58-4660-a983-5680821c5719",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "ename": "",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31mFailed to start the Kernel. \n",
+ "\u001b[1;31mUnable to start Kernel 'lcr-env (Python 3.11.1)' due to a timeout waiting for the ports to get used. \n",
+ "\u001b[1;31mView Jupyter log for further details."
+ ]
+ }
+ ],
"source": [
"# Import standard libraries\n",
"import pandas as pd\n",
@@ -87,7 +98,8 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here..."
+ "mpg_data.shape\n",
+ "#rows,columns"
]
},
{
@@ -105,7 +117,7 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here..."
+ "mpg_data['mpg'].info()"
]
},
{
@@ -113,7 +125,7 @@
"id": "6d759089",
"metadata": {},
"source": [
- "Your explanation... \n"
+ "A float is a data type used to represent numbers that have a decimal point.\n"
]
},
{
@@ -131,7 +143,7 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here... "
+ "mpg_data['horsepower'].nlargest(5)"
]
},
{
@@ -149,7 +161,7 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here..."
+ "len(mpg_data.columns) - 1"
]
},
{
@@ -225,7 +237,12 @@
"id": "f67e57ab",
"metadata": {},
"source": [
- "> Your answer here..."
+ "Positive association between miles per gallon and acceleration.\n",
+ "Negative assoication between miles per gallon and cylinders. \n",
+ "Negative assoication between miles per gallon and displacement. \n",
+ "Negative assoication between miles per gallon and horsepower. \n",
+ "Positive association between miles per gallon and model year.\n",
+ "Negative assoication between miles per gallon and weight. "
]
},
{
@@ -241,7 +258,7 @@
"id": "843f9eef",
"metadata": {},
"source": [
- "> Your answer here..."
+ "This line is mathematically determined to represent the best possible linear summary of the relationship between the independent (predictor) variable and the dependent (response) variable in a dataset. "
]
},
{
@@ -257,7 +274,7 @@
"id": "2ea782fc",
"metadata": {},
"source": [
- "> Your answer here..."
+ "Data points do not always or usually fall perfectly on the regression line, this is because the line only reflects the averaged relationship between two factors. Each point is influenced by many factors, causing deviations and noise. "
]
},
{
@@ -279,7 +296,9 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here..."
+ "mpg_train, mpg_test = train_test_split(\n",
+ " mpg_data, train_size=0.75, random_state=42\n",
+ ")"
]
},
{
@@ -299,12 +318,18 @@
"source": [
"# Your code here ...\n",
"\n",
- "numeric_predictors = 🤷♂️\n",
+ "numeric_predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration']\n",
+ "\n",
+ "lm = LinearRegression()\n",
+ "lm.fit(\n",
+ " mpg_train[numeric_predictors], # A single-column data frame (square footage)\n",
+ " mpg_train[\"mpg\"] # A series (house prices)\n",
+ ")\n",
"\n",
"\n",
"# Create a DataFrame containing the slope (coefficients) and intercept\n",
"coefficients_df = pd.DataFrame({\n",
- " \"predictor\": numeric_predictors.columns,\n",
+ " \"predictor\": numeric_predictors,\n",
" \"slope\": lm.coef_,\n",
" \"intercept\": [lm.intercept_] * len(lm.coef_)\n",
"})\n",
@@ -335,7 +360,15 @@
"metadata": {},
"outputs": [],
"source": [
- "# Your code here ..."
+ "mpg_test[\"predicted\"] = lm.predict(mpg_test[numeric_predictors])\n",
+ "\n",
+ "# Calculate RMSPE\n",
+ "lm_rmspe = mean_squared_error(\n",
+ " y_true=mpg_test[\"mpg\"], # actual sale prices\n",
+ " y_pred=mpg_test[\"predicted\"] # the value predicted by the model\n",
+ ")**1/2\n",
+ "\n",
+ "lm_rmspe"
]
},
{
@@ -386,7 +419,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "lcr-env",
"language": "python",
"name": "python3"
},
@@ -400,12 +433,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.3"
- },
- "vscode": {
- "interpreter": {
- "hash": "497a84dc8fec8cf8d24e7e87b6d954c9a18a327edc66feb9b9ea7e9e72cc5c7e"
- }
+ "version": "3.11.1"
}
},
"nbformat": 4,