-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathapi.py
940 lines (787 loc) · 33.1 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
"""
# api.py usage
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" `
## 执行参数:
`-s` - `SoVITS模型路径, 可在 config.py 中指定`
`-g` - `GPT模型路径, 可在 config.py 中指定`
调用请求缺少参考音频时使用
`-dr` - `默认参考音频路径`
`-dt` - `默认参考音频文本`
`-dl` - `默认参考音频语种, "中文","英文","日文","韩文","粤语,"zh","en","ja","ko","yue"`
`-d` - `推理设备, "cuda","cpu"`
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
`-fp` - `覆盖 config.py 使用全精度`
`-hp` - `覆盖 config.py 使用半精度`
`-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"`
·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"`
·-st` - `返回的音频数据类型, 默认int16, "int16", "int32"`
·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入`
`-hb` - `cnhubert路径`
`-b` - `bert路径`
## 调用:
### 推理
endpoint: `/`
使用执行参数指定的参考音频:
GET:
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
使用执行参数指定的参考音频并设定分割符号:
GET:
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&cut_punc=,。`
POST:
```json
{
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh",
"cut_punc": ",。",
}
```
手动指定当次推理所使用的参考音频:
GET:
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh",
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400
手动指定当次推理所使用的参考音频,并提供参数:
GET:
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&top_k=20&top_p=0.6&temperature=0.6&speed=1&inp_refs="456.wav"&inp_refs="789.wav"`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh",
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh",
"top_k": 20,
"top_p": 0.6,
"temperature": 0.6,
"speed": 1,
"inp_refs": ["456.wav","789.wav"]
}
```
RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400
### 更换默认参考音频
endpoint: `/change_refer`
key与推理端一样
GET:
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh"
}
```
RESP:
成功: json, http code 200
失败: json, 400
### 命令控制
endpoint: `/control`
command:
"restart": 重新运行
"exit": 结束运行
GET:
`http://127.0.0.1:9880/control?command=restart`
POST:
```json
{
"command": "restart"
}
```
RESP: 无
"""
import argparse
import os,re
import sys
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
import signal
import LangSegment
from time import time as ttime
import torch
import librosa
import soundfile as sf
from fastapi import FastAPI, Request, Query, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from feature_extractor import cnhubert
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
import config as global_config
import logging
import subprocess
class DefaultRefer:
def __init__(self, path, text, language):
self.path = args.default_refer_path
self.text = args.default_refer_text
self.language = args.default_refer_language
def is_ready(self) -> bool:
return is_full(self.path, self.text, self.language)
def is_empty(*items): # 任意一项不为空返回False
for item in items:
if item is not None and item != "":
return False
return True
def is_full(*items): # 任意一项为空返回False
for item in items:
if item is None or item == "":
return False
return True
class Speaker:
def __init__(self, name, gpt, sovits, phones = None, bert = None, prompt = None):
self.name = name
self.sovits = sovits
self.gpt = gpt
self.phones = phones
self.bert = bert
self.prompt = prompt
speaker_list = {}
class Sovits:
def __init__(self, vq_model, hps):
self.vq_model = vq_model
self.hps = hps
def get_sovits_weights(sovits_path):
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
logger.info(f"模型版本: {hps.model.version}")
model_params_dict = vars(hps.model)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**model_params_dict
)
if ("pretrained" not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
sovits = Sovits(vq_model, hps)
return sovits
class Gpt:
def __init__(self, max_sec, t2s_model):
self.max_sec = max_sec
self.t2s_model = t2s_model
global hz
hz = 50
def get_gpt_weights(gpt_path):
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
logger.info("Number of parameter: %.2fM" % (total / 1e6))
gpt = Gpt(max_sec, t2s_model)
return gpt
def change_gpt_sovits_weights(gpt_path,sovits_path):
try:
gpt = get_gpt_weights(gpt_path)
sovits = get_sovits_weights(sovits_path)
except Exception as e:
return JSONResponse({"code": 400, "message": str(e)}, status_code=400)
speaker_list["default"] = Speaker(name="default", gpt=gpt, sovits=sovits)
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
def clean_text_inf(text, language, version):
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, norm_text, language):
language=language.replace("all_","")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
from text import chinese
def get_phones_and_bert(text,language,version,final=False):
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
language = language.replace("all_","")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日韩文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
if language == "zh":
if re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext,"zh",version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext,"yue",version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
textlist=[]
langlist=[]
LangSegment.setfilters(["zh","ja","en","ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
if not final and len(phones) < 6:
return get_phones_and_bert("." + text,language,version,final=True)
return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def get_spepc(hps, filename):
audio,_ = librosa.load(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
maxx=audio.abs().max()
if(maxx>1):
audio/=min(2,maxx)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
hps.data.win_length, center=False)
return spec
def pack_audio(audio_bytes, data, rate):
if media_type == "ogg":
audio_bytes = pack_ogg(audio_bytes, data, rate)
elif media_type == "aac":
audio_bytes = pack_aac(audio_bytes, data, rate)
else:
# wav无法流式, 先暂存raw
audio_bytes = pack_raw(audio_bytes, data, rate)
return audio_bytes
def pack_ogg(audio_bytes, data, rate):
# Author: AkagawaTsurunaki
# Issue:
# Stack overflow probabilistically occurs
# when the function `sf_writef_short` of `libsndfile_64bit.dll` is called
# using the Python library `soundfile`
# Note:
# This is an issue related to `libsndfile`, not this project itself.
# It happens when you generate a large audio tensor (about 499804 frames in my PC)
# and try to convert it to an ogg file.
# Related:
# https://github.com/RVC-Boss/GPT-SoVITS/issues/1199
# https://github.com/libsndfile/libsndfile/issues/1023
# https://github.com/bastibe/python-soundfile/issues/396
# Suggestion:
# Or split the whole audio data into smaller audio segment to avoid stack overflow?
def handle_pack_ogg():
with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
audio_file.write(data)
import threading
# See: https://docs.python.org/3/library/threading.html
# The stack size of this thread is at least 32768
# If stack overflow error still occurs, just modify the `stack_size`.
# stack_size = n * 4096, where n should be a positive integer.
# Here we chose n = 4096.
stack_size = 4096 * 4096
try:
threading.stack_size(stack_size)
pack_ogg_thread = threading.Thread(target=handle_pack_ogg)
pack_ogg_thread.start()
pack_ogg_thread.join()
except RuntimeError as e:
# If changing the thread stack size is unsupported, a RuntimeError is raised.
print("RuntimeError: {}".format(e))
print("Changing the thread stack size is unsupported.")
except ValueError as e:
# If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified.
print("ValueError: {}".format(e))
print("The specified stack size is invalid.")
return audio_bytes
def pack_raw(audio_bytes, data, rate):
audio_bytes.write(data.tobytes())
return audio_bytes
def pack_wav(audio_bytes, rate):
if is_int32:
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int32)
wav_bytes = BytesIO()
sf.write(wav_bytes, data, rate, format='WAV', subtype='PCM_32')
else:
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int16)
wav_bytes = BytesIO()
sf.write(wav_bytes, data, rate, format='WAV')
return wav_bytes
def pack_aac(audio_bytes, data, rate):
if is_int32:
pcm = 's32le'
bit_rate = '256k'
else:
pcm = 's16le'
bit_rate = '128k'
process = subprocess.Popen([
'ffmpeg',
'-f', pcm, # 输入16位有符号小端整数PCM
'-ar', str(rate), # 设置采样率
'-ac', '1', # 单声道
'-i', 'pipe:0', # 从管道读取输入
'-c:a', 'aac', # 音频编码器为AAC
'-b:a', bit_rate, # 比特率
'-vn', # 不包含视频
'-f', 'adts', # 输出AAC数据流格式
'pipe:1' # 将输出写入管道
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, _ = process.communicate(input=data.tobytes())
audio_bytes.write(out)
return audio_bytes
def read_clean_buffer(audio_bytes):
audio_chunk = audio_bytes.getvalue()
audio_bytes.truncate(0)
audio_bytes.seek(0)
return audio_bytes, audio_chunk
def cut_text(text, punc):
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}]
if len(punc_list) > 0:
punds = r"[" + "".join(punc_list) + r"]"
text = text.strip("\n")
items = re.split(f"({punds})", text)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items)%2 == 1:
mergeitems.append(items[-1])
text = "\n".join(mergeitems)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
return text
def only_punc(text):
return not any(t.isalnum() or t.isalpha() for t in text)
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k= 15, top_p = 0.6, temperature = 0.6, speed = 1, inp_refs = None, spk = "default"):
infer_sovits = speaker_list[spk].sovits
vq_model = infer_sovits.vq_model
hps = infer_sovits.hps
infer_gpt = speaker_list[spk].gpt
t2s_model = infer_gpt.t2s_model
max_sec = infer_gpt.max_sec
t0 = ttime()
prompt_text = prompt_text.strip("\n")
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
prompt_language, text = prompt_language, text.strip("\n")
dtype = torch.float16 if is_half == True else torch.float32
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if (is_half == True):
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
refers=[]
if(inp_refs):
for path in inp_refs:
try:
refer = get_spepc(hps, path).to(dtype).to(device)
refers.append(refer)
except Exception as e:
logger.error(e)
if(len(refers)==0):
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
t1 = ttime()
version = vq_model.version
os.environ['version'] = version
prompt_language = dict_language[prompt_language.lower()]
text_language = dict_language[text_language.lower()]
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
texts = text.split("\n")
audio_bytes = BytesIO()
for text in texts:
# 简单防止纯符号引发参考音频泄露
if only_punc(text):
continue
audio_opt = []
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
t2 = ttime()
with torch.no_grad():
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k = top_k,
top_p = top_p,
temperature = temperature,
early_stop_num=hz * max_sec)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
t3 = ttime()
audio = \
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
refers,speed=speed).detach().cpu().numpy()[
0, 0] ###试试重建不带上prompt部分
max_audio=np.abs(audio).max()
if max_audio>1:
audio/=max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
if is_int32:
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 2147483647).astype(np.int32),hps.data.sampling_rate)
else:
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16),hps.data.sampling_rate)
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
if stream_mode == "normal":
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
yield audio_chunk
if not stream_mode == "normal":
if media_type == "wav":
audio_bytes = pack_wav(audio_bytes,hps.data.sampling_rate)
yield audio_bytes.getvalue()
def handle_control(command):
if command == "restart":
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def handle_change(path, text, language):
if is_empty(path, text, language):
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
if path != "" or path is not None:
default_refer.path = path
if text != "" or text is not None:
default_refer.text = text
if language != "" or language is not None:
default_refer.language = language
logger.info(f"当前默认参考音频路径: {default_refer.path}")
logger.info(f"当前默认参考音频文本: {default_refer.text}")
logger.info(f"当前默认参考音频语种: {default_refer.language}")
logger.info(f"is_ready: {default_refer.is_ready()}")
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs):
if (
refer_wav_path == "" or refer_wav_path is None
or prompt_text == "" or prompt_text is None
or prompt_language == "" or prompt_language is None
):
refer_wav_path, prompt_text, prompt_language = (
default_refer.path,
default_refer.text,
default_refer.language,
)
if not default_refer.is_ready():
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
if cut_punc == None:
text = cut_text(text,default_cut_punc)
else:
text = cut_text(text,cut_punc)
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs), media_type="audio/"+media_type)
# --------------------------------
# 初始化部分
# --------------------------------
dict_language = {
"中文": "all_zh",
"粤语": "all_yue",
"英文": "en",
"日文": "all_ja",
"韩文": "all_ko",
"中英混合": "zh",
"粤英混合": "yue",
"日英混合": "ja",
"韩英混合": "ko",
"多语种混合": "auto", #多语种启动切分识别语种
"多语种混合(粤语)": "auto_yue",
"all_zh": "all_zh",
"all_yue": "all_yue",
"en": "en",
"all_ja": "all_ja",
"all_ko": "all_ko",
"zh": "zh",
"yue": "yue",
"ja": "ja",
"ko": "ko",
"auto": "auto",
"auto_yue": "auto_yue",
}
# logger
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG)
logger = logging.getLogger('uvicorn')
# 获取配置
g_config = global_config.Config()
# 获取参数
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
# bool值的用法为 `python ./api.py -fp ...`
# 此时 full_precision==True, half_precision==False
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive")
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac")
parser.add_argument("-st", "--sub_type", type=str, default="int16", help="音频数据类型, int16 / int32")
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…")
# 切割常用分句符为 `python ./api.py -cp ".?!。?!"`
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
args = parser.parse_args()
sovits_path = args.sovits_path
gpt_path = args.gpt_path
device = args.device
port = args.port
host = args.bind_addr
cnhubert_base_path = args.hubert_path
bert_path = args.bert_path
default_cut_punc = args.cut_punc
# 应用参数配置
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)
# 模型路径检查
if sovits_path == "":
sovits_path = g_config.pretrained_sovits_path
logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
if gpt_path == "":
gpt_path = g_config.pretrained_gpt_path
logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}")
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "":
default_refer.path, default_refer.text, default_refer.language = "", "", ""
logger.info("未指定默认参考音频")
else:
logger.info(f"默认参考音频路径: {default_refer.path}")
logger.info(f"默认参考音频文本: {default_refer.text}")
logger.info(f"默认参考音频语种: {default_refer.language}")
# 获取半精度
is_half = g_config.is_half
if args.full_precision:
is_half = False
if args.half_precision:
is_half = True
if args.full_precision and args.half_precision:
is_half = g_config.is_half # 炒饭fallback
logger.info(f"半精: {is_half}")
# 流式返回模式
if args.stream_mode.lower() in ["normal","n"]:
stream_mode = "normal"
logger.info("流式返回已开启")
else:
stream_mode = "close"
# 音频编码格式
if args.media_type.lower() in ["aac","ogg"]:
media_type = args.media_type.lower()
elif stream_mode == "close":
media_type = "wav"
else:
media_type = "ogg"
logger.info(f"编码格式: {media_type}")
# 音频数据类型
if args.sub_type.lower() == 'int32':
is_int32 = True
logger.info(f"数据类型: int32")
else:
is_int32 = False
logger.info(f"数据类型: int16")
# 初始化模型
cnhubert.cnhubert_base_path = cnhubert_base_path
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
ssl_model = cnhubert.get_model()
if is_half:
bert_model = bert_model.half().to(device)
ssl_model = ssl_model.half().to(device)
else:
bert_model = bert_model.to(device)
ssl_model = ssl_model.to(device)
change_gpt_sovits_weights(gpt_path = gpt_path, sovits_path = sovits_path)
# --------------------------------
# 接口部分
# --------------------------------
app = FastAPI()
@app.post("/set_model")
async def set_model(request: Request):
json_post_raw = await request.json()
return change_gpt_sovits_weights(
gpt_path = json_post_raw.get("gpt_model_path"),
sovits_path = json_post_raw.get("sovits_model_path")
)
@app.get("/set_model")
async def set_model(
gpt_model_path: str = None,
sovits_model_path: str = None,
):
return change_gpt_sovits_weights(gpt_path = gpt_model_path, sovits_path = sovits_model_path)
@app.post("/control")
async def control(request: Request):
json_post_raw = await request.json()
return handle_control(json_post_raw.get("command"))
@app.get("/control")
async def control(command: str = None):
return handle_control(command)
@app.post("/change_refer")
async def change_refer(request: Request):
json_post_raw = await request.json()
return handle_change(
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language")
)
@app.get("/change_refer")
async def change_refer(
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None
):
return handle_change(refer_wav_path, prompt_text, prompt_language)
@app.post("/")
async def tts_endpoint(request: Request):
json_post_raw = await request.json()
return handle(
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language"),
json_post_raw.get("text"),
json_post_raw.get("text_language"),
json_post_raw.get("cut_punc"),
json_post_raw.get("top_k", 15),
json_post_raw.get("top_p", 1.0),
json_post_raw.get("temperature", 1.0),
json_post_raw.get("speed", 1.0),
json_post_raw.get("inp_refs", [])
)
@app.get("/")
async def tts_endpoint(
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None,
text: str = None,
text_language: str = None,
cut_punc: str = None,
top_k: int = 15,
top_p: float = 1.0,
temperature: float = 1.0,
speed: float = 1.0,
inp_refs: list = Query(default=[])
):
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs)
if __name__ == "__main__":
uvicorn.run(app, host=host, port=port, workers=1)