forked from RUC-NLPIR/FlashRAG
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_exp.py
592 lines (489 loc) · 18.4 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
from flashrag.config import Config
from flashrag.utils import get_dataset
import argparse
def naive(args):
save_note = "naive"
config_dict = {"save_note": save_note, "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
from flashrag.pipeline import SequentialPipeline
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
pred_process_fun = lambda x: x.split("\n")[0]
pipeline = SequentialPipeline(config)
result = pipeline.run(test_data)
def zero_shot(args):
save_note = "zero-shot"
config_dict = {"save_note": save_note, "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
from flashrag.prompt import PromptTemplate
templete = PromptTemplate(
config=config,
system_prompt="Answer the question based on your own knowledge. Only give me the answer and do not output any other words.",
user_prompt="Question: {question}",
)
pred_process_fun = lambda x: x.split("\n")[0]
pipeline = SequentialPipeline(config, templete)
result = pipeline.naive_run(test_data)
def aar(args):
"""
Reference:
Zichun Yu et al. "Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In"
in ACL 2023.
Official repo: https://github.com/OpenMatch/Augmentation-Adapted-Retriever
"""
# two types of checkpoint: ance / contriever
# retrieval_method = "AAR-contriever" # AAR-ANCE
# index path of this retriever
retrieval_method = args.method_name
if "contriever" in retrieval_method:
index_path = "aar-contriever_Flat.index"
else:
index_path = "aar-ance_Flat.index"
model2path = {"AAR-contriever": "model/AAR-Contriever-KILT", "AAR-ANCE": "model/AAR-ANCE"}
model2pooling = {"AAR-contriever": "mean", "AAR-ANCE": "cls"}
save_note = retrieval_method
config_dict = {
"retrieval_method": retrieval_method,
"model2path": model2path,
"index_path": index_path,
"model2pooling": model2pooling,
"save_note": save_note,
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
pred_process_fun = lambda x: x.split("\n")[0]
pipeline = SequentialPipeline(config)
# result = pipeline.run(test_data, pred_process_fun=pred_process_fun)
result = pipeline.run(test_data)
def llmlingua(args):
"""
Reference:
Huiqiang Jiang et al. "LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models"
in EMNLP 2023
Huiqiang Jiang et al. "LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression"
in ICLR MEFoMo 2024.
Official repo: https://github.com/microsoft/LLMLingua
"""
refiner_name = "longllmlingua" #
refiner_model_path = "model/llama-2-7b"
config_dict = {
"refiner_name": refiner_name,
"refiner_model_path": refiner_model_path,
"llmlingua_config": {
"rate": 0.55,
"condition_in_question": "after_condition",
"reorder_context": "sort",
"dynamic_context_compression_ratio": 0.3,
"condition_compare": True,
"context_budget": "+100",
"rank_method": "longllmlingua",
},
"refiner_input_prompt_flag": False,
"save_note": "longllmlingua",
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
pipeline = SequentialPipeline(config)
result = pipeline.run(test_data)
def recomp(args):
"""
Reference:
Fangyuan Xu et al. "RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation"
in ICLR 2024.
Official repo: https://github.com/carriex/recomp
"""
# ###### Specified parameters ######
refiner_name = "recomp-abstractive" # recomp-extractive
model_dict = {
"nq": "model/recomp_nq_abs",
"triviaqa": "model/recomp_tqa_abs",
"hotpotqa": "model/recomp_hotpotqa_abs",
}
refiner_model_path = model_dict.get(args.dataset_name, None)
refiner_max_input_length = 1024
refiner_max_output_length = 512
# parameters for extractive compress
refiner_topk = 5
refiner_pooling_method = "mean"
refiner_encode_max_length = 256
config_dict = {
"refiner_name": refiner_name,
"refiner_model_path": refiner_model_path,
"refiner_max_input_length": refiner_max_input_length,
"refiner_max_output_length": refiner_max_output_length,
"refiner_topk": 5,
"refiner_pooling_method": refiner_pooling_method,
"refiner_encode_max_length": refiner_encode_max_length,
"save_note": refiner_name,
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
pipeline = SequentialPipeline(config)
result = pipeline.run(test_data)
def sc(args):
"""
Reference:
Yucheng Li et al. "Compressing Context to Enhance Inference Efficiency of Large Language Models"
in EMNLP 2023.
Official repo: https://github.com/liyucheng09/Selective_Context
Note:
Need to install spacy:
```python -m spacy download en_core_web_sm```
or
```
wget https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.6.0/en_core_web_sm-3.6.0.tar.gz
pip install en_core_web_sm-3.6.0.tar.gz
```
"""
refiner_name = "selective-context"
refiner_model_path = "gpt2-medium-en"
config_dict = {
"refiner_name": refiner_name,
"refiner_model_path": refiner_model_path,
"sc_config": {"reduce_ratio": 0.5},
"save_note": "selective-context",
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
pipeline = SequentialPipeline(config)
result = pipeline.run(test_data)
def retrobust(args):
"""
Reference:
Ori Yoran et al. "Making Retrieval-Augmented Language Models Robust to Irrelevant Context"
in ICLR 2024.
Official repo: https://github.com/oriyor/ret-robust
"""
model_dict = {
"nq": "model/llama-2-13b-peft-nq-retrobust",
"2wiki": "model/llama-2-13b-peft-2wikihop-retrobust",
}
if args.dataset_name in ["nq", "triviaqa", "popqa", "web_questions"]:
lora_path = model_dict["nq"]
elif args.dataset_name in ["hotpotqa", "2wikimultihopqa"]:
lora_path = model_dict["2wiki"]
else:
print("Not use lora")
lora_path = model_dict.get(args.dataset_name, None)
config_dict = {
"save_note": "Ret-Robust",
"generator_model": "llama2-13B",
"generator_lora_path": lora_path,
"generation_params": {"max_tokens": 100},
"gpu_id": args.gpu_id,
"generator_max_input_len": 4096,
"dataset_name": args.dataset_name,
}
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SelfAskPipeline
from flashrag.utils import selfask_pred_parse
pipeline = SelfAskPipeline(config, max_iter=5, single_hop=False)
# use specify prediction parse function
result = pipeline.run(test_data, pred_process_fun=selfask_pred_parse)
def sure(args):
"""
Reference:
Jaehyung Kim et al. "SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs"
in ICLR 2024
Official repo: https://github.com/bbuing9/ICLR24_SuRe
"""
config_dict = {"save_note": "SuRe", "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SuRePipeline
pipeline = SuRePipeline(config)
pred_process_fun = lambda x: x.split("\n")[0]
result = pipeline.run(test_data)
def replug(args):
"""
Reference:
Weijia Shi et al. "REPLUG: Retrieval-Augmented Black-Box Language Models".
"""
save_note = "replug"
config_dict = {"save_note": save_note, "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
pred_process_fun = lambda x: x.split("\n")[0]
from flashrag.pipeline import REPLUGPipeline
pipeline = REPLUGPipeline(config)
result = pipeline.run(test_data)
def skr(args):
"""
Reference:
Yile Wang et al. "Self-Knowledge Guided Retrieval Augmentation for Large Language Models"
in EMNLP Findings 2023.
Official repo: https://github.com/THUNLP-MT/SKR/
Note:
`skr-knn` need training data in inference stage to determain whether to retrieve. training data should in
`.json` format in following format:
format:
[
{
"question": ... , // question
"judgement": "ir_better" / "ir_worse" / "same", // judgement result, can be obtained by comparing
...
},
...
]
"""
judger_name = "skr"
model_path = "model/sup-simcse-bert-base-uncased"
training_data_path = "./sample_data/skr_training.json"
config_dict = {
"judger_name": judger_name,
"judger_config": {
"model_path": model_path,
"training_data_path": training_data_path,
"topk": 5,
"batch_size": 64,
"max_length": 128,
},
"save_note": "skr",
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import ConditionalPipeline
pipeline = ConditionalPipeline(config)
result = pipeline.run(test_data)
def selfrag(args):
"""
Reference:
Akari Asai et al. " SELF-RAG: Learning to Retrieve, Generate and Critique through self-reflection"
in ICLR 2024.
Official repo: https://github.com/AkariAsai/self-rag
"""
config_dict = {
"generator_model": "selfrag-llama2-7B",
"generator_model_path": "model/selfrag_llama2_7b",
"framework": "vllm",
"save_note": "self-rag",
"gpu_id": args.gpu_id,
"generation_params": {
"max_tokens": 100,
"temperature": 0.0,
"top_p": 1.0,
"skip_special_tokens": False,
},
"dataset_name": args.dataset_name,
}
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SelfRAGPipeline
pipeline = SelfRAGPipeline(
config,
threhsold=0.2,
max_depth=2,
beam_width=2,
w_rel=1.0,
w_sup=1.0,
w_use=1.0,
use_grounding=True,
use_utility=True,
use_seqscore=True,
ignore_cont=True,
mode="adaptive_retrieval",
)
result = pipeline.run(test_data, batch_size=256)
def flare(args):
"""
Reference:
Zhengbao Jiang et al. "Active Retrieval Augmented Generation"
in EMNLP 2023.
Official repo: https://github.com/bbuing9/ICLR24_SuRe
"""
config_dict = {"save_note": "flare", "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import FLAREPipeline
pipeline = FLAREPipeline(config)
result = pipeline.run(test_data)
def iterretgen(args):
"""
Reference:
Zhihong Shao et al. "Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy"
in EMNLP Findings 2023.
Zhangyin Feng et al. "Retrieval-Generation Synergy Augmented Large Language Models"
in EMNLP Findings 2023.
"""
iter_num = 3
config_dict = {
"save_note": "iter-retgen",
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import IterativePipeline
pipeline = IterativePipeline(config, iter_num=iter_num)
result = pipeline.run(test_data)
def ircot(args):
"""
Reference:
Harsh Trivedi et al. "Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions"
in ACL 2023
"""
save_note = "ircot"
config_dict = {"save_note": save_note, "gpu_id": args.gpu_id, "dataset_name": args.dataset_name}
from flashrag.pipeline import IRCOTPipeline
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
print(config["generator_model_path"])
pipeline = IRCOTPipeline(config)
result = pipeline.run(test_data)
def trace(args):
"""
Reference:
Jinyuan Fang et al. "TRACE the Evidence: Constructing Knowledge-Grounded Reasoning Chains for Retrieval-Augmented Generation"
"""
save_note = "trace"
trace_config = {
"num_examplars": 3,
"max_chain_length": 4,
"topk_triple_select": 5, # num of candidate triples
"num_choices": 20,
"min_triple_prob": 1e-4,
"num_beams": 5, # number of selected prob at each step of constructing chain
"num_chains": 20, # number of generated chains
"n_context": 5, # number of used chains in generation
"context_type": "triples", # triples/triple-doc
}
config_dict = {
"save_note": save_note,
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
"refiner_name": "kg-trace",
"trace_config": trace_config,
"framework": "hf", # Trance only supports using Huggingface Transformers since it needs logits of outputs
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import SequentialPipeline
pipeline = SequentialPipeline(config)
result = pipeline.run(test_data)
def spring(args):
"""
Reference:
Yutao Zhu et al. "One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models"
"""
save_note = "spring"
config_dict = {
"save_note": save_note,
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
"framework": "hf",
}
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
# download token embedding from: https://huggingface.co/yutaozhu94/SPRING
token_embedding_path = "llama2.7b.chat.added_token_embeddings.pt"
from flashrag.prompt import PromptTemplate
from flashrag.pipeline import SequentialPipeline
from flashrag.utils import get_generator, get_retriever
# prepare prompt and generator for Spring method
system_prompt = (
"Answer the question based on the given document."
"Only give me the answer and do not output any other words."
"\nThe following are given documents.\n\n{reference}"
)
added_tokens = [f" [ref{i}]" for i in range(1, 51)]
added_tokens = "".join(added_tokens)
user_prompt = added_tokens + "Question: {question}\nAnswer:"
prompt_template = PromptTemplate(config, system_prompt, user_prompt, enable_chat=False)
generator = get_generator(config)
generator.add_new_tokens(token_embedding_path, token_name_func=lambda idx: f"[ref{idx+1}]")
pipeline = SequentialPipeline(config=config, prompt_template=prompt_template, generator=generator)
result = pipeline.run(test_data)
def adaptive(args):
judger_name = "adaptive-rag"
model_path = "illuminoplanet/adaptive-rag-classifier"
config_dict = {
"judger_name": judger_name,
"judger_config": {"model_path": model_path},
"save_note": "adaptive-rag",
"gpu_id": args.gpu_id,
"dataset_name": args.dataset_name,
}
# preparation
config = Config("my_config.yaml", config_dict)
all_split = get_dataset(config)
test_data = all_split[args.split]
from flashrag.pipeline import AdaptivePipeline
pipeline = AdaptivePipeline(config)
result = pipeline.run(test_data)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Running exp")
parser.add_argument("--method_name", type=str)
parser.add_argument("--split", type=str)
parser.add_argument("--dataset_name", type=str)
parser.add_argument("--gpu_id", type=str)
parser.add_argument("--pd_gpu_id", type=int)
func_dict = {
"AAR-contriever": aar,
"AAR-ANCE": aar,
"naive": naive,
"zero-shot": zero_shot,
"llmlingua": llmlingua,
"recomp": recomp,
"selective-context": sc,
"ret-robust": retrobust,
"sure": sure,
"replug": replug,
"skr": skr,
"selfrag": selfrag,
"flare": flare,
"iterretgen": iterretgen,
"ircot": ircot,
"trace": trace,
"adaptive": adaptive,
}
args = parser.parse_args()
from paddle.device import set_device
set_device('gpu:{}'.format(args.pd_gpu_id))
import paddle
paddle.disable_static()
func = func_dict[args.method_name]
func(args)