-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathfinetune.py
209 lines (179 loc) · 5.27 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Credits -> Original script: https://github.com/project-baize/baize-chatbot/blob/main/finetune.py
import os
import argparse
import sys
import torch
import random
import json
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
PeftModel,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--exp_name", help="Experiment name", type=str, required=True
)
parser.add_argument(
"--data_folder",
help="Path to the data_folder",
type=str,
default="data_ITA",
)
parser.add_argument(
"--model_size",
help="LLama model size, available options: 7b, 13b, 30b, 65b",
type=str,
default="7b",
)
args = parser.parse_args()
data_folder: str = args.data_folder
size = args.model_size
assert size in [
"7b",
"13b",
"30b",
"65b",
], f"Model size must be one of [7b, 13b, 30b, 65b]. You passed {size}"
# Parameters
MICRO_BATCH_SIZE = 32
BATCH_SIZE = 128
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 1
LEARNING_RATE = 3e-4 # Karpathy constant
CUTOFF_LEN = 512
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = 2000
TARGET_MODULES = [
"q_proj",
"k_proj",
"v_proj",
"down_proj",
"gate_proj",
"up_proj",
]
DATA_PATH = f"{data_folder}/data_tmp.json"
OUTPUT_DIR = "checkpoints_new/{}_{}".format(size, args.exp_name)
if not os.path.exists(data_folder):
os.makedirs(data_folder)
# Load data
data = []
for x in ["quora", "alpaca", "medical", "stack"]:
print("{}/{}_chat_data_IT2.json".format(data_folder, x))
data += json.load(open("{}/{}_chat_data_IT2.json".format(data_folder, x)))
random.shuffle(data)
json.dump(data, open(DATA_PATH, "w"))
data = load_dataset("json", data_files=DATA_PATH)
# Load Model
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-{}-hf".format(size),
load_in_8bit=True,
device_map=device_map,
)
total_params, params = 0, 0
tokenizer = LlamaTokenizer.from_pretrained(
"decapoda-research/llama-{}-hf".format(size), add_eos_token=True
)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
config.save_pretrained(OUTPUT_DIR)
# model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
model = PeftModel.from_pretrained(
model, f"project-baize/baize-lora-{size.upper()}"
)
for n, p in model.model.named_parameters():
if any([x in n for x in ["lora"]]):
total_params += p.numel()
params += p.numel()
print(
"Total number of parameters: {}M, rate: {}%".format(
total_params // 1000 / 1000, round(total_params / params * 100, 2)
)
)
# Data Preprocess
def generate_prompt(data_point):
return data_point["input"]
def tokenize(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def generate_and_tokenize_prompt(data_point):
prompt = generate_prompt(data_point)
return tokenize(prompt)
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
# Training
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
per_device_eval_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
num_train_epochs=EPOCHS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=200 if VAL_SET_SIZE > 0 else None,
save_steps=200,
output_dir=OUTPUT_DIR,
save_total_limit=100,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
),
data_collator=transformers.DataCollatorForLanguageModeling(
tokenizer, mlm=False
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(OUTPUT_DIR)