Skip to content

Commit 90eb145

Browse files
committed
updates
1 parent 574d2c3 commit 90eb145

File tree

1 file changed

+19
-8
lines changed

1 file changed

+19
-8
lines changed

lectures/cass_fiscal.md

Lines changed: 19 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.16.4
7+
jupytext_version: 1.17.1
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -1586,19 +1586,19 @@ $$ (eq:consume_r_mod)
15861586
In a steady state, $c_{t+1} = c_t$. Then {eq}`eq:diff_mod` becomes
15871587
15881588
$$
1589-
1=\mu^{-\gamma}\beta[(1-\tau_k)(f'(k)-\delta)+1] \tag{36.29}
1589+
1=\mu^{-\gamma}\beta[(1-\tau_k)(f'(k)-\delta)+1]
15901590
$$ (eq:diff_mod_st)
15911591
15921592
from which we can compute that the steady-state level of capital per unit of effective labor satisfies
15931593
15941594
$$
1595-
f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k}) \tag{36.30}
1595+
f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k})
15961596
$$ (eq:cap_mod_st)
15971597
15981598
and that
15991599
16001600
$$
1601-
\bar{R}=\frac{\mu^{\gamma}}{\beta} \tag{36.31}
1601+
\bar{R}=\frac{\mu^{\gamma}}{\beta}
16021602
$$ (eq:Rbar_mod_st)
16031603
16041604
The steady-state level of consumption per unit of effective labor can be found using {eq}`eq:feasi_mod`:
@@ -1664,6 +1664,7 @@ for ax in axes[5:]:
16641664
plt.tight_layout()
16651665
plt.show()
16661666
```
1667+
16671668
The results in the figures are mainly driven by {eq}`eq:diff_mod_st`
16681669
and imply that a permanent increase in
16691670
$\mu$ will lead to a decrease in the steady-state value of capital per unit of effective
@@ -1916,6 +1917,16 @@ def Bf_path(k, c, g, model):
19161917
R[t-1] * Bf[t-1] + c[t] + inv + g[t-1]
19171918
- f(k[t-1], model))
19181919
return Bf
1920+
1921+
def Bf_ss(c_ss, k_ss, g_ss, model):
1922+
"""
1923+
Compute the steady-state B^f
1924+
"""
1925+
R_ss = 1.0 / model.β
1926+
inv_ss = model.δ * k_ss
1927+
num = c_ss + inv_ss + g_ss - f(k_ss, model)
1928+
den = 1.0 - R_ss
1929+
return num / den
19191930
```
19201931
19211932
and
@@ -1992,11 +2003,11 @@ The steady state of the two-country model is characterized by two sets of equati
19922003
First, the following equations determine the steady-state capital-labor ratios $\bar k$ and $\bar k^*$ in each country:
19932004
19942005
$$
1995-
f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k} \tag{12.13.12}
2006+
f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k}
19962007
$$ (eq:steady_k_bar)
19972008
19982009
$$
1999-
f'(\bar{k}^*) = \delta + \frac{\rho}{1 - \tau_k^*} \tag{12.13.13}
2010+
f'(\bar{k}^*) = \delta + \frac{\rho}{1 - \tau_k^*}
20002011
$$ (eq:steady_k_star)
20012012
20022013
Given these steady-state capital-labor ratios, the domestic and foreign consumption values $\bar c$ and $\bar c^*$ are determined by:
@@ -2172,7 +2183,7 @@ g_ss = 0.2
21722183
k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
21732184
21742185
k_star = k0_ss
2175-
Bf_star = 0.0
2186+
Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
21762187
21772188
init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
21782189
sol_glob = root(
@@ -2229,7 +2240,7 @@ shocks_global = {
22292240
22302241
k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
22312242
k_star = k0_ss
2232-
Bf_star = 0.0
2243+
Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
22332244
22342245
init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
22352246

0 commit comments

Comments
 (0)