@@ -4,7 +4,7 @@ jupytext:
4
4
extension : .md
5
5
format_name : myst
6
6
format_version : 0.13
7
- jupytext_version : 1.16.4
7
+ jupytext_version : 1.17.1
8
8
kernelspec :
9
9
display_name : Python 3 (ipykernel)
10
10
language : python
@@ -1586,19 +1586,19 @@ $$ (eq:consume_r_mod)
1586
1586
In a steady state, $c_{t+1} = c_t$. Then {eq}`eq:diff_mod` becomes
1587
1587
1588
1588
$$
1589
- 1=\mu^{-\gamma}\beta[ (1-\tau_k)(f'(k)-\delta)+1] \tag{36.29}
1589
+ 1=\mu^{-\gamma}\beta[ (1-\tau_k)(f'(k)-\delta)+1]
1590
1590
$$ (eq:diff_mod_st)
1591
1591
1592
1592
from which we can compute that the steady-state level of capital per unit of effective labor satisfies
1593
1593
1594
1594
$$
1595
- f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k}) \tag{36.30}
1595
+ f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k})
1596
1596
$$ (eq:cap_mod_st)
1597
1597
1598
1598
and that
1599
1599
1600
1600
$$
1601
- \bar{R}=\frac{\mu^{\gamma}}{\beta} \tag{36.31}
1601
+ \bar{R}=\frac{\mu^{\gamma}}{\beta}
1602
1602
$$ (eq:Rbar_mod_st)
1603
1603
1604
1604
The steady-state level of consumption per unit of effective labor can be found using {eq}`eq:feasi_mod`:
@@ -1664,6 +1664,7 @@ for ax in axes[5:]:
1664
1664
plt.tight_layout()
1665
1665
plt.show()
1666
1666
```
1667
+
1667
1668
The results in the figures are mainly driven by {eq}`eq:diff_mod_st`
1668
1669
and imply that a permanent increase in
1669
1670
$\mu$ will lead to a decrease in the steady-state value of capital per unit of effective
@@ -1916,6 +1917,16 @@ def Bf_path(k, c, g, model):
1916
1917
R[t-1] * Bf[t-1] + c[t] + inv + g[t-1]
1917
1918
- f(k[t-1], model))
1918
1919
return Bf
1920
+
1921
+ def Bf_ss(c_ss, k_ss, g_ss, model):
1922
+ """
1923
+ Compute the steady-state B^f
1924
+ """
1925
+ R_ss = 1.0 / model.β
1926
+ inv_ss = model.δ * k_ss
1927
+ num = c_ss + inv_ss + g_ss - f(k_ss, model)
1928
+ den = 1.0 - R_ss
1929
+ return num / den
1919
1930
```
1920
1931
1921
1932
and
@@ -1992,11 +2003,11 @@ The steady state of the two-country model is characterized by two sets of equati
1992
2003
First, the following equations determine the steady-state capital-labor ratios $\bar k$ and $\bar k^*$ in each country:
1993
2004
1994
2005
$$
1995
- f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k} \tag{12.13.12}
2006
+ f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k}
1996
2007
$$ (eq:steady_k_bar)
1997
2008
1998
2009
$$
1999
- f'(\bar{k}^* ) = \delta + \frac{\rho}{1 - \tau_k^* } \tag{12.13.13}
2010
+ f'(\bar{k}^* ) = \delta + \frac{\rho}{1 - \tau_k^* }
2000
2011
$$ (eq:steady_k_star)
2001
2012
2002
2013
Given these steady-state capital-labor ratios, the domestic and foreign consumption values $\bar c$ and $\bar c^*$ are determined by:
@@ -2172,7 +2183,7 @@ g_ss = 0.2
2172
2183
k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
2173
2184
2174
2185
k_star = k0_ss
2175
- Bf_star = 0.0
2186
+ Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
2176
2187
2177
2188
init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
2178
2189
sol_glob = root(
@@ -2229,7 +2240,7 @@ shocks_global = {
2229
2240
2230
2241
k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
2231
2242
k_star = k0_ss
2232
- Bf_star = 0.0
2243
+ Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
2233
2244
2234
2245
init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
2235
2246
0 commit comments